Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists help Met Office predict severity of snow falls

23.03.2004


Institute of Physics Condensed Matter and Materials Physics Conference


University of Warwick, 4-7 April, 2004


Developments in predicting snow formation, snap-shot MRI (magnetic resonance imaging), organic semiconductor technology, high temperature superconductivity, and progress towards quantum computers are some of the topics being presented at a major conference organised by the Institute of Physics next month. The four-day conference, CMMP 2004, will take place from Sunday 4th to Wednesday 7th April 2004 at the University of Warwick.

Highlights include a presentation on Monday 5th April by Chris Westbrook and Professor Robin Ball from the University of Warwick who will be revealing progress towards developing a computer simulation of snowflake formation within clouds. The aim of the project - which is in collaboration with Dr Paul Field at the Met Office, who originally suggested the study - is to increase the accuracy of weather forecasting by allowing more information to be extracted from radar and satellite measurements of clouds.



When the temperature in a cloud is low enough, any water will usually form ice crystals. These can have many different shapes including rods with hexagonal sides and rosettes (which consist of three or more rods growing outwards from a central point), as well as the more familiar six-armed ice ’stars’. As the ice crystals move through clouds they bump into each other and stick together. Eventually the crystal clusters become so large that they are heavy enough to fall out of the cloud as ’snowflakes’ (where any individual snowflake will consist of a cluster of ice crystals of one particular shape). So far the Warwick team have investigated the clustering together of both rods and rosettes in cold, high altitude ice clouds known as cirrus clouds.

"We compute what would happen if you just randomly distribute these clusters in space then track what collisions will occur as they fall under gravity" explains Professor Ball. From these calculations, which assume the crystals stick together on contact, the Warwick team has obtained predictions of the shapes and the distribution of different sizes of ice clusters in cirrus clouds. These agree well with much of the experimental data obtained from various instruments including cloud particle imagers - special cameras which use a laser beam to illuminate the particles being photographed - by the National Center for Atmospheric Research in the USA.

The theoretical simulation does not however shed any light on why the ice crystals stick together. This process is occurring even at temperatures as low as -40ºC, where it is too cold for the accepted higher temperature method - of a thin liquid layer on the surface of the crystals freezing on contact and joining them together - to work. "We are already in a position to develop better interpretation of standard radar and satellite imaging techniques, but to firmly predict the size and concentration of ice crystal clusters - and hence reveal how intense the rain or snowfall will be - we need to know how the clustering starts. So we are now contemplating a direct attack on the question of what the sticking mechanism is" says Professor Ball, who acknowledges that modelling behaviour like this at a molecular level will be challenging due to the vast amounts of computing power needed.

There will be twenty-two symposia within the conference including ’Nanomagnetism and Spintronics’, ’Quantum Fluids and Solids’, ’Semiconductor Optics and Photonics’, ‘Applied Superconductivity’ and ’Bose-Einstein Condensates’. In addition to the presentations in each symposium, there will be a series of plenary lectures by world-renowned researchers. These include ‘Snap Shot MRI’ by Nobel prize-winner Sir Peter Mansfield, ‘Carbon Nanotube Electronics and Optoelectronics’ by P Avouris of IBM USA, ’Single Photon Devices for Quantum Cryptography’ by A Shields of Toshiba UK, ’Dynamic Phenomena in Magnets: Investigations over Five Orders of Magnitude’ by RL Stamps of the University of Western Australia and ’Liquids, Solids and Elastic Heresy in Between - is there a 2 1⁄2th State of Matter?’ by M Warner of the University of Cambridge, UK.

David Reid | alfa
Further information:
http://physics.iop.org/IOP/Confs/CMMP04/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>