Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists help Met Office predict severity of snow falls


Institute of Physics Condensed Matter and Materials Physics Conference

University of Warwick, 4-7 April, 2004

Developments in predicting snow formation, snap-shot MRI (magnetic resonance imaging), organic semiconductor technology, high temperature superconductivity, and progress towards quantum computers are some of the topics being presented at a major conference organised by the Institute of Physics next month. The four-day conference, CMMP 2004, will take place from Sunday 4th to Wednesday 7th April 2004 at the University of Warwick.

Highlights include a presentation on Monday 5th April by Chris Westbrook and Professor Robin Ball from the University of Warwick who will be revealing progress towards developing a computer simulation of snowflake formation within clouds. The aim of the project - which is in collaboration with Dr Paul Field at the Met Office, who originally suggested the study - is to increase the accuracy of weather forecasting by allowing more information to be extracted from radar and satellite measurements of clouds.

When the temperature in a cloud is low enough, any water will usually form ice crystals. These can have many different shapes including rods with hexagonal sides and rosettes (which consist of three or more rods growing outwards from a central point), as well as the more familiar six-armed ice ’stars’. As the ice crystals move through clouds they bump into each other and stick together. Eventually the crystal clusters become so large that they are heavy enough to fall out of the cloud as ’snowflakes’ (where any individual snowflake will consist of a cluster of ice crystals of one particular shape). So far the Warwick team have investigated the clustering together of both rods and rosettes in cold, high altitude ice clouds known as cirrus clouds.

"We compute what would happen if you just randomly distribute these clusters in space then track what collisions will occur as they fall under gravity" explains Professor Ball. From these calculations, which assume the crystals stick together on contact, the Warwick team has obtained predictions of the shapes and the distribution of different sizes of ice clusters in cirrus clouds. These agree well with much of the experimental data obtained from various instruments including cloud particle imagers - special cameras which use a laser beam to illuminate the particles being photographed - by the National Center for Atmospheric Research in the USA.

The theoretical simulation does not however shed any light on why the ice crystals stick together. This process is occurring even at temperatures as low as -40ºC, where it is too cold for the accepted higher temperature method - of a thin liquid layer on the surface of the crystals freezing on contact and joining them together - to work. "We are already in a position to develop better interpretation of standard radar and satellite imaging techniques, but to firmly predict the size and concentration of ice crystal clusters - and hence reveal how intense the rain or snowfall will be - we need to know how the clustering starts. So we are now contemplating a direct attack on the question of what the sticking mechanism is" says Professor Ball, who acknowledges that modelling behaviour like this at a molecular level will be challenging due to the vast amounts of computing power needed.

There will be twenty-two symposia within the conference including ’Nanomagnetism and Spintronics’, ’Quantum Fluids and Solids’, ’Semiconductor Optics and Photonics’, ‘Applied Superconductivity’ and ’Bose-Einstein Condensates’. In addition to the presentations in each symposium, there will be a series of plenary lectures by world-renowned researchers. These include ‘Snap Shot MRI’ by Nobel prize-winner Sir Peter Mansfield, ‘Carbon Nanotube Electronics and Optoelectronics’ by P Avouris of IBM USA, ’Single Photon Devices for Quantum Cryptography’ by A Shields of Toshiba UK, ’Dynamic Phenomena in Magnets: Investigations over Five Orders of Magnitude’ by RL Stamps of the University of Western Australia and ’Liquids, Solids and Elastic Heresy in Between - is there a 2 1⁄2th State of Matter?’ by M Warner of the University of Cambridge, UK.

David Reid | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>