Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new carbon pollution called ’tar balls’

22.03.2004


An international team of scientists has discovered new carbon-bearing particles, which they call "tar balls," in air pollution over Hungary, the Indian Ocean, and southern Africa. Tar balls form in smoke from wood fires and agricultural and forest burning. Carbon-bearing particles like tar balls in the lower atmosphere are a concern, they say, because they may affect global climate change, as well as air quality.



The team, headed by Mihály Pósfai, an Earth and environmental science professor at the University of Veszprém in Hungary, completed the first comprehensive study of tar balls and report their findings this month in the Journal of Geophysical Research--Atmospheres, published by the American Geophysical Union.

"They are especially abundant in slightly aged--minutes to hours old--biomass [vegetal] smoke," says co-author Peter Buseck, a geochemist at Arizona State University. That means they probably formed from gases in smoke plumes, he says, and contain organic compounds that absorb sunlight. "Tar balls occur in a variety of atmospheric environments that are affected by human activities," he says.


At first glance, tar balls may look like soot, a common form of carbon pollution in the air, but when observed through an electron microscope, the differences become clear, the researchers say.

"Soot forms in the flame and consists of spheres," Pósfai says. Each soot sphere is made of graphitic layers that are concentrically wrapped like the layers of an onion and, with other soot spheres, forms chains or grape-like clusters, he says. Tar balls, on the other hand, are just individual spheres and do not form chains or clusters. They lack any internal structure and don’t have onion-like layers in them. "The internal structure affects the optical properties of the particle--the more ordered the graphitic structure, the darker the color," Pósfai explains. "Dark particles absorb sunlight and thereby heat the atmosphere." While black soot is the major absorber of sunlight in the atmosphere, tar balls may also be absorbing sunlight. "And this is significant," he says.


The research was supported by NASA, the U.S. National Science Foundation, and the Hungarian Science Foundation.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org/
http://www.agu.org/sci_soc/prrl/prrl0415.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>