Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate changes locked inside microfossils

04.03.2004


Fossilised remains of sea creatures are commonly found in rocks in the mountains of the Basque Country. So, at some time in the past, Euskal Herria was under the sea. For example, during the Palaeocene period, some 65-55 million years ago. The region was then subtropical, and similar in appearance to the Australian Coral Reef.



Along the Bizkaia and Gipuzkoa coast, around Eibar, in Irati and in Urbasa, for example, we can see Palaeocene outcrops at the surface. During that period there were collisions between the European and Iberian tectonic plates which pushed up earth mass that lay under the sea. These very collisions gave rise to the Pyrenees.

These Palaeocene rock outcrops are not at all common on the rest of the planet and, thus, in order to ascertain what happened during that period, researchers have an invaluable source of information in the Basque Country. Moreover, the area has another advantage: remains occur both of the sea crust and of the continental platform and its edge, given that the town of Zumaia at that time was submerged 1,000 metres below the sea while the Rioja Alavesa was above surface.


The importance of these rocks lies in the fact that, within them, remains which contain information on palaeoclimatic and palaeoecological changes that took place in the Palaeocene can be found: microfossils, for example. The data obtained from these miniscule creatures can prove to be very useful today in order to know about the evolution of global warming which is apparently taking place on Earth, just like now, the end of the Palaeocene saw a rapid rise in global warming.

Microfossils: data bank

A group of researchers at Leioa (the Bizkaia campus of the University of the Basque, Country) analysed microfossils, mainly planktonic foraminifers and calcareous nanofossils. These microorganisms lived in the earth’s crust at the bottom of the ocean and their fossils have been piling up over millions of years to the point of providing an unbeatable source of data.

These microorganisms are very sensitive to climatic or temperature changes and that is why some live in warm waters and others in cold. Thus, they are found in differentiated zones in the sea and so, if the sea temperature varies, these zones become modified and the microorganisms migrate with the changes from zone to zone. Thus, the fossil register for these microorganisms in any zone indicates the successive climatic changes that occurred during that era.


To analyse these microfossils it has to be taken into account that nowadays they form part of calcareous rocks or marls. For example, 80 % of the rocks formed during the Palaeocene at the bottom of the sea may be made up of these microfossils or, rather, of their shells.

In these analyses, researchers extract a small rock sample which is then broken up in water. Just one drop of this contains millions of microfossils. A drop is analysed under the microscope or with a magnifying glass, as the fossils are the approximate size of a few micras.

These investigations show up the different microfossil species found in the rock sample and the proportion of each are counted and analysed. In the rocks in the Basque Country more than 200 species of calcareous nanofossils and 175 of planktonic foraminifers have been identified. With the knowledge of which live in warm and which in cold waters, we can deduce what climatic changes happened in past times and have a good idea of what is likely to happen in the future.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>