Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thawing permafrost increases greenhouse gas emission from subarctic mires

25.02.2004


The permafrost in the mires of subarctic Sweden is undergoing dramatic changes. The part of the soils that thaws in the summer, the so-called active layer, has become deeper since 1970 and the permafrost has disappeared altogether in some locations. This has lead to significant changes in the vegetation composition and subsequent increase in emissions of the powerful greenhouse gas methane. Methane is 25 times more potent compared to carbon dioxide as greenhouse gas.



Behind these new findings is an international research team lead from the GeoBiosphere Science Centre at Lund University, Sweden. The results have just been published in the prestigious American scientific journal Geophysical Research Letters. The results are unique as there are very few places in the circumpolar North where a multi-decadal comparison of observations is possible. The Abisko region in subarctic Sweden is unique in the circumpolar North with respect to long-term records of climate, permafrost and other environmental variables. There are likewise many historical investigations that recent observations may be compared with. The Abisko area is recognised as part of the international network of Man and the Biosphere Reserves (under the auspices of UNESCO).

In the present study airborne infrared images are used to compare the vegetation distribution in 1970 with that of 2000. Dramatic changes are observed and these are related to the climate warming and decreasing permafrost extent that has been observed over the same period. Also the land-atmosphere exchanges of carbon dioxide and methane has been studied for a long time in Abisko. The exchange of carbon dioxide with ecosystems can either be an atmospheric source or sink while in the case of methane it is predominantly a source. Methane is released from the breakdown of plant material under wet soil conditions.


Permafrost disappearance and subsequent wetter soil conditions have lead to increases in methane emissions.

"At a particular mire, Stordalen, we have been able to estimate an increase in methane emissions of at least 20% but maybe as much as 60% from 1970 to 2000” says one of the researchers Torben R. Christensen at the GeoBiosphere Science Centre at Lund University.

"Despite methane being such an important greenhouse gas it is often forgotten in the discussions around the greenhouse effect. Methane is released from rice agriculture and meat production but the largest single source of methane is the natural wetlands. If what is seen in subarctic Sweden is a representative picture for the circumpolar North this could mean an acceleration in the rate of predicted climate warming.

"The annual mean temperature in Abisko is –0.7ºC but during recent years it has often been above zero. One might imagine the cold subarctic ecosystems as very static but in areas where the mean annual temperature is around zero the ecosystems may be extremely sensitive. The ecosystems are dynamic and their response to climate change is very rapid. This we have seen clearly here in Abisko” says Torben R. Christensen.

Göran Frankel | alfa
Further information:
http://www.lu.se/info/pm/670_pressm.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>