Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpointing origins of Siberian peat bogs raises concerns

16.01.2004


Massive Siberian peat bogs, widely known as the permanently frozen home of untold kilometers of moss and uncountable hordes of mosquitoes, also are huge repositories for gases that are thought to play an important role in the Earth’s climate balance, according to newly published research by a team of U.S. and Russian scientists in the Jan. 16 edition of the journal Science.



Those gases, carbon dioxide and methane, are known to trap heat in the Earth’s atmosphere, but the enormous amounts of the gases contained in the bogs haven’t previously been accounted for in climate-change models.

The new research, said Laurence Smith, an associate professor at the University of California, Los Angeles and a primary author on the paper, could help to refine those materials. Smith’s work was funded by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering.


A key finding of the research, unrelated to modern climate change, is that the bogs themselves came into being suddenly about 11,500 to 9,000 years ago-much earlier than previously thought-and expanded very rapidly to fill the niche they now occupy. Their appearance coincides with an abrupt and well- documented spike in the amount of atmospheric methane recorded in ancient climate records. The finding counters previously held views that the bogs were largely unchanged-and unchanging-over millennia. The rapid appearance of the bogs provides strong evidence that this is not the case.

Scientists have hotly debated the origin of the methane spike, variously attributing it to sources in tropical wetlands and offshore sediments. The new research conclusively points for the first time to Siberia as a likely methane source.

But the researchers also point out that the bogs-which collectively cover an area of roughly 603,000 square kilometers (233,000 square miles)-have long absorbed and held vast amounts of carbon dioxide, while releasing large amounts of methane in the atmosphere.

If, as many scientists predict, a regional Arctic warming trend thaws the bogs and causes the trapped gases to be released into the atmosphere, that could result in a major and unexpected shift in climate trends, according to the researchers.

The teams spent three seasons in the Siberian Arctic, drilling several meters down into the sphagnum moss to produce the peat samples for analysis.

Smith said thawing of the permafrost would essentially turn the carbon and methane balance in the peat bogs from a scientific constant in climate-change equations to a variable.

"Traditionally, we had thought these areas were simply a gradually varying source of methane and an important sink for atmospheric carbon," he said. "They’ve been viewed as a stable thing that we always count on. The bottom line is Siberian peat lands may be a bigger player in climate change than we knew before."

"There are natural sources of greenhouse gases out there that are potentially enormous that we need to know about," Smith said. "One of the concerns is that up until now, the bogs have been more or less a sink for CO2, absorbing carbon dioxide from the atmosphere. In an extreme scenario, not only would they stop taking up CO2, they would release a lot of the carbon they have taken up for centuries."

Smith conceded that the team searched their Siberian peat samples for evidence that such a drastic release of gas occurred in the past, with inconclusive results.

But, he added, as other research into Earth’s ancient climate begins to yield evidence that changes have occurred before, accounting for unknowns such as the carbon and methane balance in the bogs becomes more important.

"It emphasizes a point that has been emerging over the past few years; the idea that the climate system is highly unpredictable and full of thresholds that can trigger greenhouse gas sources and sinks to abruptly switch on and off," he said. "The more of them we can identify, the more accurately we can model and anticipate changes in the future."

Peter West | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>