Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help predict soil production and erosion

06.11.2003


Two Dartmouth researchers have quantified the chemical weathering rates of bedrock at three sites around the world. By concentrating their testing in localized areas and using X-ray fluorescence to measure elements and oxides, they have found that variations in the chemistry of weathered bedrock (clay) do not always follow the patterns of the underlying bedrock.



This study by Earth sciences graduate student Benjamin Burke and Assistant Professor Arjun Heimsath will be presented at The Geological Society of America’s annual meeting, November 2-5 in Seattle, WA. Their research helps predict future soil production and erosion in similar landscapes, and may someday predict areas of mineral-rich soil for agricultural purposes.

Burke and Heimsath are studying the rate of soil production, erosion and mineral weathering on landscapes built on granite. Wind and water physically wear down landscapes, while chemical weathering occurs more slowly as water works into the earth to break down rock into clay and other minerals.


"Understanding and quantifying how weathering rates vary across a very localized area allows us to test previously existing assumptions about how land is shifting," says Burke. "We are also examining the assumption that point measurements can be used to infer area wide averages when it comes to soil and rock sampling."

Burke and Heimsath studied three sites: two in southeastern Australia and one in coastal northern California. They chose landscapes with similar properties that have been studied by geologists in the past, building on previous research. At each site, they examined a two-square meter pit, which was about a half meter deep, and took 26 samples from each pit.

They found that in two out of three sites, there was little variability throughout the samples. In the third area, one of the Australian sites, the data revealed great variation across the sample. These results show that chemical and physical weathering processes can work irregularly across very small areas, the researchers say.

"This study definitely supports work by previous researchers indicating that chemical weathering itself contributes to a changing landscape," says Heimsath. "We’ve added the chemical analysis to quantify what we already suspected."

This study was funded by the Geological Society of America and the National Science Foundation.

Susan Knapp | Dartmouth College
Further information:
http://www.dartmouth.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>