Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help predict soil production and erosion

06.11.2003


Two Dartmouth researchers have quantified the chemical weathering rates of bedrock at three sites around the world. By concentrating their testing in localized areas and using X-ray fluorescence to measure elements and oxides, they have found that variations in the chemistry of weathered bedrock (clay) do not always follow the patterns of the underlying bedrock.



This study by Earth sciences graduate student Benjamin Burke and Assistant Professor Arjun Heimsath will be presented at The Geological Society of America’s annual meeting, November 2-5 in Seattle, WA. Their research helps predict future soil production and erosion in similar landscapes, and may someday predict areas of mineral-rich soil for agricultural purposes.

Burke and Heimsath are studying the rate of soil production, erosion and mineral weathering on landscapes built on granite. Wind and water physically wear down landscapes, while chemical weathering occurs more slowly as water works into the earth to break down rock into clay and other minerals.


"Understanding and quantifying how weathering rates vary across a very localized area allows us to test previously existing assumptions about how land is shifting," says Burke. "We are also examining the assumption that point measurements can be used to infer area wide averages when it comes to soil and rock sampling."

Burke and Heimsath studied three sites: two in southeastern Australia and one in coastal northern California. They chose landscapes with similar properties that have been studied by geologists in the past, building on previous research. At each site, they examined a two-square meter pit, which was about a half meter deep, and took 26 samples from each pit.

They found that in two out of three sites, there was little variability throughout the samples. In the third area, one of the Australian sites, the data revealed great variation across the sample. These results show that chemical and physical weathering processes can work irregularly across very small areas, the researchers say.

"This study definitely supports work by previous researchers indicating that chemical weathering itself contributes to a changing landscape," says Heimsath. "We’ve added the chemical analysis to quantify what we already suspected."

This study was funded by the Geological Society of America and the National Science Foundation.

Susan Knapp | Dartmouth College
Further information:
http://www.dartmouth.edu

More articles from Earth Sciences:

nachricht New Technique for Finding Weakness in Earth’s Crust
30.09.2016 | University of Adelaide

nachricht Researcher creates a controlled rogue wave in realistic oceanic conditions
30.09.2016 | Aalto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>