Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signals From Space Enable Earthquake Detection

03.11.2003


A violent earthquake that cracked highways in Alaska set the sky shaking as well as the land, an ESA-backed study has confirmed.



This fact could help improve earthquake detection techniques in areas lacking seismic networks, including the ocean floor. A team from the Institut de Physique du Globe de Paris and the California Institute of Technology has successfully used the Global Positioning System (GPS) satellite constellation to map disturbances in the ionosphere following last November’s magnitude 7.9 earthquake in Denali, Alaska.

Their paper has been published in the scientific journal Geophysical Research Letters. The research itself was carried out in support of ESA’s Space Weather Applications Pilot Project, aimed at developing operational monitoring systems for space conditions that can influence life here on Earth.


The ionosphere is an atmospheric region filled with charged particles that blankets the Earth between altitudes of about 75 to 1000 km. It has a notable ability to interfere with radio waves propagating through it.

In the particular case of GPS navigational signals, received on Earth from orbiting satellites, fluctuations in the ionosphere – known as ’ionospheric scintillations’ - have the potential to cause signal delays, navigation errors or in extreme cases several hours of service lockouts at particular locations.

But while such interference can be an inconvenience for ordinary GPS users, it represents a boon for scientists. By measuring even much smaller-scale shifts in GPS signal propagation time - caused by variations in local electron density as the signal passes through the ionosphere - researchers have at their fingertips a means of mapping ionospheric fluctuations in near real time.

The French and US team made use of dense networks of hundreds of fixed GPS receivers in place across California. These networks were originally established to measure small ground movements due to geological activity, but they can also be utilised to plot the ionosphere structure across three dimensions and in fine detail.

Then when the Denali earthquake occurred on 3 November 2002, the team had a chance to use this technique to investigate another distinctive property of the ionosphere, its ability to work like a natural amplifier of seismic waves moving across the Earth’s surface.

There are several different types of seismic waves moving the ground during an earthquake, the largest scale and the one that does most of the movement is known as a Rayleigh Wave. This type of wave rolls along the ground up and down and side-to-side, in the same way as a wave rolls along the ocean.

Previous research has established that shock waves from Rayleigh Waves in turn set up large-scale disturbances in the ionosphere. A one millimetre peak-to-peak displacement at ground level can set up oscillations larger than 100 metres at an altitude of 150 km.

What the team were able to do following the Denali quake was detect a distinctive wavefront moving through the ionosphere. "Using the network allowed us to observe the propagation of the waves," explained co-author Vesna Ducic. "We could also separate the small total electron content signal from the very large total electron content variations related to the daily variation of the ionosphere."

The team observed a signal two to three times larger than the noise level, arriving about 660 to 670 seconds after the arrival of Rayleigh Waves on the ground. And because around six GPS satellites are visible to every ground receiver they were able to calculate the altitude of maximum perturbation – around 290 to 300 km up.

The signals were weak and only sampled every 30 seconds, with a maximum resolution of 50 km and the overall noise rate high. But the ionospheric signal observed had a clear pattern consistent with models of seismic behaviour. The hope is that the technique can be improved in future, and used to detect earthquakes in areas without seismic detectors, such as the deep ocean or near islands.

"In the framework of Galileo we plan to develop this research,” said Ducic. "Galileo will double the number of satellites and therefore will allow much more precise maps of the ionosphere. We can also foresee that Europe will develop a dense network of Galileo/GPS stations that will take part in the monitoring of these phenomena.

"ESA, together with the French Ministry of Research and CNES have already decided to fund a pre-operational project called SPECTRE - Service and Products for Ionosphere Electronic Content and Tropospheric Refractive index over Europe from GPS - devoted to the high-resolution mapping of the ionosphere. We will be carrying out mapping above Europe as well as California.

"These investigations will support the French space agency CNES’s DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) microsatellite, to be launched in 2004 and devoted to the detection in the ionosphere of seismic, volcanic and man-made signals. These ESA activities will be performed in the framework of the Space Weather Applications Pilot Project."

The Space Weather Applications Pilot Project is an ESA initiative which has already begun to develop a wide range of application-oriented services based around space weather monitoring.

The co-funded services under development - of which this project is one - also include forecasting disruption to power and communication systems, and the provision of early warning to spacecraft operators of the hazards presented by increased solar and space weather activities. The hope is that an a seismic detection service based on ionospheric measurements may in future supplement existing resources in Europe and elsewhere.

Frédéric Le Gall | European Space Agency
Further information:
http://www.esa.int/export/esaSA/SEMUPAWLDMD_earth_0.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>