Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-real time ozone forecasting made possible by Envisat

03.11.2003


Stratospheric data supplied by Envisat are the basis for a near-real time global ozone forecasting service now available online.

Up in the stratosphere about 25 km above our heads is the ozone layer. Stratospheric ozone absorbs up to 98% of the Sun’s harmful ultraviolet light – making the difference between a suntan and sunburn, and safeguarding all life on Earth. But chemical activity in the stratosphere ultimately due to the presence of manmade gases such as chlorofluorocarbons (CFCs) can thin the ozone layer.

The Brussels-based Belgian Institute for Space Aeronomy (BIRA-IASB from its initials in Flemish and French) has developed a service called the Belgian Assimilation System of Chemical Observations from Envisat (BASCOE) that maps and forecasts not only the concentration of ozone in the stratosphere but also 56 other chemical species, including those responsible for ozone depletion.



BASCOE relies on an instrument aboard Envisat called the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). It works day and night to measure infrared emissions from the Earth’s ’limb’ – the narrow band of atmosphere between the planetary surface and empty space. Emissions along certain wavelengths work like signatures, indicating the presence of specific atmospheric chemicals.

MIPAS has the capability to measure up to 30 trace gas species, but for the time being only a subset of them is provided by the ESA ground segment operationally to the user community. The others whose concentrations are forecast by BASCOE have their presence calculated indirectly, by assimilating MIPAS level 2 products into a complex computer model of stratospheric chemistry processes developed by BIRA-IASB. The resultant analyses are available within a day.

"The stratosphere is one of the best-understood areas of atmospheric chemistry, a fact which makes the BASCOE model possible," explained Dominique Fonteyn of BIRA-IASB. "In fact this model predates the launch of Envisat, and was originally intended simply as a summary of our existing understanding of stratospheric chemistry. But the large amount of work that went into it – some 50,000 lines of code – made us look at using it in other ways, and assimilating Envisat data into it for operational use.

"The aim was to reduce the usual time delay between satellite observation and data use, in the same way weather forecasting does. As well as chemical interactions, the model also includes weather data provided by the European Centre for Medium Range Weather Forecasts, because polar stratospheric clouds transported by winds play a major role in the process of ozone destruction."

Users of the service – available at http://bascoe.oma.be - can obtain forecasts of global ozone levels for the week ahead as well as maps of nitric acid trihydrate (NAT) and active chlorine (ClOx), both implicated in ozone thinning.

The intention to use the MIPAS data to ’fine-tune’ the model in future for increased accuracy, along with assimilating data from other Envisat instruments such as GOMOS (Global Ozone Monitoring by Occultation of Stars) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) once they become available.

Claus Zehner | European Space Agency
Further information:
http://www.esa.int/export/esaSA/SEMR9DWLDMD_earth_0.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>