Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-real time ozone forecasting made possible by Envisat

03.11.2003


Stratospheric data supplied by Envisat are the basis for a near-real time global ozone forecasting service now available online.

Up in the stratosphere about 25 km above our heads is the ozone layer. Stratospheric ozone absorbs up to 98% of the Sun’s harmful ultraviolet light – making the difference between a suntan and sunburn, and safeguarding all life on Earth. But chemical activity in the stratosphere ultimately due to the presence of manmade gases such as chlorofluorocarbons (CFCs) can thin the ozone layer.

The Brussels-based Belgian Institute for Space Aeronomy (BIRA-IASB from its initials in Flemish and French) has developed a service called the Belgian Assimilation System of Chemical Observations from Envisat (BASCOE) that maps and forecasts not only the concentration of ozone in the stratosphere but also 56 other chemical species, including those responsible for ozone depletion.



BASCOE relies on an instrument aboard Envisat called the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). It works day and night to measure infrared emissions from the Earth’s ’limb’ – the narrow band of atmosphere between the planetary surface and empty space. Emissions along certain wavelengths work like signatures, indicating the presence of specific atmospheric chemicals.

MIPAS has the capability to measure up to 30 trace gas species, but for the time being only a subset of them is provided by the ESA ground segment operationally to the user community. The others whose concentrations are forecast by BASCOE have their presence calculated indirectly, by assimilating MIPAS level 2 products into a complex computer model of stratospheric chemistry processes developed by BIRA-IASB. The resultant analyses are available within a day.

"The stratosphere is one of the best-understood areas of atmospheric chemistry, a fact which makes the BASCOE model possible," explained Dominique Fonteyn of BIRA-IASB. "In fact this model predates the launch of Envisat, and was originally intended simply as a summary of our existing understanding of stratospheric chemistry. But the large amount of work that went into it – some 50,000 lines of code – made us look at using it in other ways, and assimilating Envisat data into it for operational use.

"The aim was to reduce the usual time delay between satellite observation and data use, in the same way weather forecasting does. As well as chemical interactions, the model also includes weather data provided by the European Centre for Medium Range Weather Forecasts, because polar stratospheric clouds transported by winds play a major role in the process of ozone destruction."

Users of the service – available at http://bascoe.oma.be - can obtain forecasts of global ozone levels for the week ahead as well as maps of nitric acid trihydrate (NAT) and active chlorine (ClOx), both implicated in ozone thinning.

The intention to use the MIPAS data to ’fine-tune’ the model in future for increased accuracy, along with assimilating data from other Envisat instruments such as GOMOS (Global Ozone Monitoring by Occultation of Stars) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) once they become available.

Claus Zehner | European Space Agency
Further information:
http://www.esa.int/export/esaSA/SEMR9DWLDMD_earth_0.html

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>