Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find evolution of life

31.10.2003


A trio of scientists including a researcher from the Lawrence Livermore National Laboratory has found that humans may owe the relatively mild climate in which their ancestors evolved to tiny marine organisms with shells and skeletons made out of calcium carbonate.



In a paper titled "Carbonate Deposition, Climate Stability and Neoproterozoic Ice Ages" in the Oct. 31 edition of Science, UC Riverside researchers Andy Ridgwell and Martin Kennedy along with LLNL climate scientist Ken Caldeira, discovered that the increased stability in modern climate may be due in part to the evolution of marine plankton living in the open ocean with shells and skeletal material made out of calcium carbonate. They conclude that these marine organisms helped prevent the ice ages of the past few hundred thousand years from turning into a severe global deep freeze.

"The most recent ice ages were mild enough to allow and possibly even promote the evolution of modern humans," Caldeira said. "Without these tiny marine organisms, the ice sheets may have grown to cover the earth, like in the snowball glaciations of the ancient past, and our ancestors might not have survived."


The researchers used a computer model describing the ocean, atmosphere and land surface to look at how atmospheric carbon dioxide would change as a result of glacier growth. They found that, in the distant past, as glaciers started to grow, the oceans would suck the greenhouse gas -- carbon dioxide out of the atmosphere -- making the Earth colder, promoting an even deeper ice age. When marine plankton with carbonate shells and skeletons are added to the model, ocean chemistry is buffered and glacial growth does not cause the ocean to absorb large amounts of carbon dioxide from the atmosphere.

But in Precambrian times (which lasted up until 544 million years ago), marine organisms in the open ocean did not produce carbonate skeletons -- and ancient rocks from the end of the Precambrian geological age indicate that huge glaciers deposited layers of crushed rock debris thousands of meters thick near the equator. If the land was frozen near the equator, then most of the surface of the planet was likely covered in ice, making Earth look like a giant snowball, the researchers said.

Around 200 million years ago, calcium carbonate organisms became critical to helping prevent the earth from freezing over. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. However, in a related study published in Nature on Sept. 25, 2003, Caldeira and LLNL physicist Michael Wickett found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>