Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find evolution of life

31.10.2003


A trio of scientists including a researcher from the Lawrence Livermore National Laboratory has found that humans may owe the relatively mild climate in which their ancestors evolved to tiny marine organisms with shells and skeletons made out of calcium carbonate.



In a paper titled "Carbonate Deposition, Climate Stability and Neoproterozoic Ice Ages" in the Oct. 31 edition of Science, UC Riverside researchers Andy Ridgwell and Martin Kennedy along with LLNL climate scientist Ken Caldeira, discovered that the increased stability in modern climate may be due in part to the evolution of marine plankton living in the open ocean with shells and skeletal material made out of calcium carbonate. They conclude that these marine organisms helped prevent the ice ages of the past few hundred thousand years from turning into a severe global deep freeze.

"The most recent ice ages were mild enough to allow and possibly even promote the evolution of modern humans," Caldeira said. "Without these tiny marine organisms, the ice sheets may have grown to cover the earth, like in the snowball glaciations of the ancient past, and our ancestors might not have survived."


The researchers used a computer model describing the ocean, atmosphere and land surface to look at how atmospheric carbon dioxide would change as a result of glacier growth. They found that, in the distant past, as glaciers started to grow, the oceans would suck the greenhouse gas -- carbon dioxide out of the atmosphere -- making the Earth colder, promoting an even deeper ice age. When marine plankton with carbonate shells and skeletons are added to the model, ocean chemistry is buffered and glacial growth does not cause the ocean to absorb large amounts of carbon dioxide from the atmosphere.

But in Precambrian times (which lasted up until 544 million years ago), marine organisms in the open ocean did not produce carbonate skeletons -- and ancient rocks from the end of the Precambrian geological age indicate that huge glaciers deposited layers of crushed rock debris thousands of meters thick near the equator. If the land was frozen near the equator, then most of the surface of the planet was likely covered in ice, making Earth look like a giant snowball, the researchers said.

Around 200 million years ago, calcium carbonate organisms became critical to helping prevent the earth from freezing over. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. However, in a related study published in Nature on Sept. 25, 2003, Caldeira and LLNL physicist Michael Wickett found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>