Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find evolution of life

31.10.2003


A trio of scientists including a researcher from the Lawrence Livermore National Laboratory has found that humans may owe the relatively mild climate in which their ancestors evolved to tiny marine organisms with shells and skeletons made out of calcium carbonate.



In a paper titled "Carbonate Deposition, Climate Stability and Neoproterozoic Ice Ages" in the Oct. 31 edition of Science, UC Riverside researchers Andy Ridgwell and Martin Kennedy along with LLNL climate scientist Ken Caldeira, discovered that the increased stability in modern climate may be due in part to the evolution of marine plankton living in the open ocean with shells and skeletal material made out of calcium carbonate. They conclude that these marine organisms helped prevent the ice ages of the past few hundred thousand years from turning into a severe global deep freeze.

"The most recent ice ages were mild enough to allow and possibly even promote the evolution of modern humans," Caldeira said. "Without these tiny marine organisms, the ice sheets may have grown to cover the earth, like in the snowball glaciations of the ancient past, and our ancestors might not have survived."


The researchers used a computer model describing the ocean, atmosphere and land surface to look at how atmospheric carbon dioxide would change as a result of glacier growth. They found that, in the distant past, as glaciers started to grow, the oceans would suck the greenhouse gas -- carbon dioxide out of the atmosphere -- making the Earth colder, promoting an even deeper ice age. When marine plankton with carbonate shells and skeletons are added to the model, ocean chemistry is buffered and glacial growth does not cause the ocean to absorb large amounts of carbon dioxide from the atmosphere.

But in Precambrian times (which lasted up until 544 million years ago), marine organisms in the open ocean did not produce carbonate skeletons -- and ancient rocks from the end of the Precambrian geological age indicate that huge glaciers deposited layers of crushed rock debris thousands of meters thick near the equator. If the land was frozen near the equator, then most of the surface of the planet was likely covered in ice, making Earth look like a giant snowball, the researchers said.

Around 200 million years ago, calcium carbonate organisms became critical to helping prevent the earth from freezing over. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. However, in a related study published in Nature on Sept. 25, 2003, Caldeira and LLNL physicist Michael Wickett found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>