Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA helping to understand water flow in the west

05.09.2003


Map of Rio Grande and Columbia River Basins

Credit: Image by Robert Simmon, NASA GSFC Earth Observatory, Michael Tischler, NASA/GSFC.


MODIS Image of Columbia River Basin Snowcover, February 24, 2003

This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) shows snowcover for the Columbia River Basin in the Cascade Mountains of Washington State, taken on February 24, 2003 (250 meter resolution). Credit: Jeff Schmaltz MODIS Land Rapid Response Team, NASA/GSFC


To do their jobs, water resource managers in the Columbia River Basin have mostly relied on data from sparsely located ground stations among the Cascade Mountains in the Pacific Northwest. But now, NASA and partnering agencies are going to provide United States Bureau of Reclamation water resource managers with high resolution satellite data, allowing them to analyze up-to-date water-related information over large areas all at once.

The pilot program is now underway with the Rio Grande and Columbia River basins where water is scarce while demands range from hydropower, to farming, fishing, boating and protecting endangered species. Water resource managers in these areas grapple with the big money stakes of distributing a finite amount of water to many groups. NASA satellite data offer to fill the data gaps in mountainous and drought-ridden terrain, and new computer models let users quickly process that data.

Land Surface Models (LSMs) from NASA, other agencies and universities, and NASA satellite data can be used to determine snowpack, amounts of soil moisture, and the loss of water into the atmosphere from plants and the soil, a process known as evapotranspiration. Understanding these variables in the water cycle is a key to managing water in such resource-limited areas.



"The latest satellites provide so much up-to-date and wide-ranging data, which we can use in the models to monitor and better understand what is happening with the water cycle in these areas," said Kristi Arsenault, research associate for the Land Data Assimilation System (LDAS) team at NASA’s Goddard Space Flight Center, and Research Associate at University of Maryland, Baltimore County.

"These efforts are designed to improve the efficiency of the analysis and prediction of water supply and demand using the emerging technologies of the Land Data Assimilation System," said Dr. Dave Matthews, manager of the River Systems and Meteorology Group of the Technical Services Center, U.S. Bureau of Reclamation (Reclamation). Computer models, known as decision support systems, that factor in ecological, human, and legal restrictions are vital to managing and allocating water, Matthews added. These systems will incorporate NASA satellite and model data.

NASA’s tools may be of vital use in the Rio Grande and Columbia River basins where the disparate and numerous water demands have enormous economic implications. In the Rio Grande Basin, for example, water managers dole out water to farmers so they can irrigate their land. At the same time, under the Endangered Species Act, states are required by law to maintain river water levels to protect the habitat of the endangered silvery minnow. A recent seven-year drought has exacerbated these demands.

Similarly, the Columbia River Basin provides water for the Coulee Dam, the largest concrete dam in North America, and a means for controlling floods. This hydroelectric dam is the third largest producer of electricity in the world. At the same time, the basin is a source of water for a billion dollar agricultural area.

To help make big decisions of allocating water, NASA’s special technologies can provide a unique perspective from space. For example, satellites can classify vegetation, a task that is essential to calculating evapotranspiration, which accounts for up to 60 percent of water loss into the air in a region like the Rio Grande Basin. Some managers have been relying on vegetation maps that dated back to 1993, in areas where wild-lands, crops and farming practices are subject to change.

Landsat data can provide highly detailed spatial information, but these images may only be available once a month, and are very expensive. The newer technologies of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra and Aqua satellites provides more frequent passes and day-to-day and week-to-week changes in vegetation production. In addition, other variables of interest, like snow cover and land surface temperatures, are updated more regularly by MODIS, which can aid in identifying areas with potential flooding and help with the daily management of the water resources.

LDAS has also begun to evaluate soil moisture data from NASA’s Advanced Microwave Scanning Radiometer (AMSR-E) aboard the Aqua satellite and 3-hour rainfall estimates from NASA’s Tropical Rainfall Measuring Mission. All this data helps determine how much water is being absorbed into the ground, versus how much is evaporating into the atmosphere. These observations will then be assimilated into Land Surface Models so that water managers can assess flood risks and other factors and act accordingly in a timely manner.

Reclamation brings water to more than 31 million people and provides one out of five Western farmers with irrigation water for 10 million acres of farmland.

One mission of NASA’s Earth Science Enterprise is to expand and accelerate the realization of economic and societal benefits from Earth science information and technology.

Krishna Ramanujan | GSCF
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0717watermgr.html

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>