Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA helping to understand water flow in the west

05.09.2003


Map of Rio Grande and Columbia River Basins

Credit: Image by Robert Simmon, NASA GSFC Earth Observatory, Michael Tischler, NASA/GSFC.


MODIS Image of Columbia River Basin Snowcover, February 24, 2003

This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) shows snowcover for the Columbia River Basin in the Cascade Mountains of Washington State, taken on February 24, 2003 (250 meter resolution). Credit: Jeff Schmaltz MODIS Land Rapid Response Team, NASA/GSFC


To do their jobs, water resource managers in the Columbia River Basin have mostly relied on data from sparsely located ground stations among the Cascade Mountains in the Pacific Northwest. But now, NASA and partnering agencies are going to provide United States Bureau of Reclamation water resource managers with high resolution satellite data, allowing them to analyze up-to-date water-related information over large areas all at once.

The pilot program is now underway with the Rio Grande and Columbia River basins where water is scarce while demands range from hydropower, to farming, fishing, boating and protecting endangered species. Water resource managers in these areas grapple with the big money stakes of distributing a finite amount of water to many groups. NASA satellite data offer to fill the data gaps in mountainous and drought-ridden terrain, and new computer models let users quickly process that data.

Land Surface Models (LSMs) from NASA, other agencies and universities, and NASA satellite data can be used to determine snowpack, amounts of soil moisture, and the loss of water into the atmosphere from plants and the soil, a process known as evapotranspiration. Understanding these variables in the water cycle is a key to managing water in such resource-limited areas.



"The latest satellites provide so much up-to-date and wide-ranging data, which we can use in the models to monitor and better understand what is happening with the water cycle in these areas," said Kristi Arsenault, research associate for the Land Data Assimilation System (LDAS) team at NASA’s Goddard Space Flight Center, and Research Associate at University of Maryland, Baltimore County.

"These efforts are designed to improve the efficiency of the analysis and prediction of water supply and demand using the emerging technologies of the Land Data Assimilation System," said Dr. Dave Matthews, manager of the River Systems and Meteorology Group of the Technical Services Center, U.S. Bureau of Reclamation (Reclamation). Computer models, known as decision support systems, that factor in ecological, human, and legal restrictions are vital to managing and allocating water, Matthews added. These systems will incorporate NASA satellite and model data.

NASA’s tools may be of vital use in the Rio Grande and Columbia River basins where the disparate and numerous water demands have enormous economic implications. In the Rio Grande Basin, for example, water managers dole out water to farmers so they can irrigate their land. At the same time, under the Endangered Species Act, states are required by law to maintain river water levels to protect the habitat of the endangered silvery minnow. A recent seven-year drought has exacerbated these demands.

Similarly, the Columbia River Basin provides water for the Coulee Dam, the largest concrete dam in North America, and a means for controlling floods. This hydroelectric dam is the third largest producer of electricity in the world. At the same time, the basin is a source of water for a billion dollar agricultural area.

To help make big decisions of allocating water, NASA’s special technologies can provide a unique perspective from space. For example, satellites can classify vegetation, a task that is essential to calculating evapotranspiration, which accounts for up to 60 percent of water loss into the air in a region like the Rio Grande Basin. Some managers have been relying on vegetation maps that dated back to 1993, in areas where wild-lands, crops and farming practices are subject to change.

Landsat data can provide highly detailed spatial information, but these images may only be available once a month, and are very expensive. The newer technologies of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra and Aqua satellites provides more frequent passes and day-to-day and week-to-week changes in vegetation production. In addition, other variables of interest, like snow cover and land surface temperatures, are updated more regularly by MODIS, which can aid in identifying areas with potential flooding and help with the daily management of the water resources.

LDAS has also begun to evaluate soil moisture data from NASA’s Advanced Microwave Scanning Radiometer (AMSR-E) aboard the Aqua satellite and 3-hour rainfall estimates from NASA’s Tropical Rainfall Measuring Mission. All this data helps determine how much water is being absorbed into the ground, versus how much is evaporating into the atmosphere. These observations will then be assimilated into Land Surface Models so that water managers can assess flood risks and other factors and act accordingly in a timely manner.

Reclamation brings water to more than 31 million people and provides one out of five Western farmers with irrigation water for 10 million acres of farmland.

One mission of NASA’s Earth Science Enterprise is to expand and accelerate the realization of economic and societal benefits from Earth science information and technology.

Krishna Ramanujan | GSCF
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0717watermgr.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>