Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists rewrite laws of glacial erosion


Glaciers, it turns out, aren’t so different from people – they can gain weight in their bottoms and be less active, scientists have discovered.

Glaciers, the heavyweights of landscape erosion, grow not just from snow accumulating on their surfaces but also from beneath by freezing of meltwater which can affect the rate at which they can erode, according to a team of scientists, including one from Michigan State University.

Their discovery, reported in a cover story in the Aug. 14 issue of the international science journal Nature, paints a new picture of how glaciers sculpture and erode the earth’s landscapes.

"Glaciers have a profound effect on the landscape, especially in mountainous regions, and this research allows us to understand how glaciers accomplish this," said Grahame Larson, a professor of geological sciences at MSU.

Larson was part of a team of scientists who made winter treks to Alaskan and Icelandic glaciers to understand how glaciers erode and transport sediment, research funded by the National Science Foundation and the Cold Regions Research and Engineering Laboratory in Hanover, N.H.

The researchers’ interest was sparked when they observed that fountains of meltwater rushing from some glacier margins spawned icy rims. They eventually were able to link this phenomenon of nature to the less lyrical but instantly identifiable event of creating ice when one pops open a can of very cold soda just pulled from an ice chest.

Larson explained that rapidly transferring ice-cold water from a high pressure environment – be it the inside of a can of soda or beneath a hulking glacier – to a lower pressure environment causes ice to form.

The soda-can effect gets a new name: glaciohydraulic supercooling. In the case of glaciers, this frazil ice forms when meltwater at the glacier bed rushes up a steeply rising slope. The new ice then clogs drainage ways at the glacier bed, dumping sediment, thus reducing the meltwater’s (and glacier’s) ability to erode. This action is called stabilizing feedback and results in the formation of a new dirty-ice layer along the glacier’s underbelly.

"This is new," Larson said. "We’re introducing laws of erosion for glaciers, and thus making it easier to understanding how glaciers subdue mountains."

Larson’s work at MSU helped to substantiate the theory of glaciohydraulic supercooling – he detected "bomb tritium," an isotope of hydrogen dispersed across the globe in the 1950s and early 1960s during nuclear testing, near the bed of some glaciers.

Under the old model of glacier building, tritium would be expected only near a glacier surface where snow slowly transforms to glacier ice. But Larson showed that tritium can also occur near the glacier’s base as the result of recent snowmelt refreezing due to glaciohydraulic supercooling.

In addition to Larson, the paper, "Stabilizing feedbacks in glacier-bed erosion," is authored by Richard Alley of Pennsylvania State University; Daniel Lawson of CRREL; Edward Evenson of Lehigh University in Bethlehem, Pa.; and Gregory Baker of the University of Buffalo.

Grahame Larson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>