Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists rewrite laws of glacial erosion


Glaciers, it turns out, aren’t so different from people – they can gain weight in their bottoms and be less active, scientists have discovered.

Glaciers, the heavyweights of landscape erosion, grow not just from snow accumulating on their surfaces but also from beneath by freezing of meltwater which can affect the rate at which they can erode, according to a team of scientists, including one from Michigan State University.

Their discovery, reported in a cover story in the Aug. 14 issue of the international science journal Nature, paints a new picture of how glaciers sculpture and erode the earth’s landscapes.

"Glaciers have a profound effect on the landscape, especially in mountainous regions, and this research allows us to understand how glaciers accomplish this," said Grahame Larson, a professor of geological sciences at MSU.

Larson was part of a team of scientists who made winter treks to Alaskan and Icelandic glaciers to understand how glaciers erode and transport sediment, research funded by the National Science Foundation and the Cold Regions Research and Engineering Laboratory in Hanover, N.H.

The researchers’ interest was sparked when they observed that fountains of meltwater rushing from some glacier margins spawned icy rims. They eventually were able to link this phenomenon of nature to the less lyrical but instantly identifiable event of creating ice when one pops open a can of very cold soda just pulled from an ice chest.

Larson explained that rapidly transferring ice-cold water from a high pressure environment – be it the inside of a can of soda or beneath a hulking glacier – to a lower pressure environment causes ice to form.

The soda-can effect gets a new name: glaciohydraulic supercooling. In the case of glaciers, this frazil ice forms when meltwater at the glacier bed rushes up a steeply rising slope. The new ice then clogs drainage ways at the glacier bed, dumping sediment, thus reducing the meltwater’s (and glacier’s) ability to erode. This action is called stabilizing feedback and results in the formation of a new dirty-ice layer along the glacier’s underbelly.

"This is new," Larson said. "We’re introducing laws of erosion for glaciers, and thus making it easier to understanding how glaciers subdue mountains."

Larson’s work at MSU helped to substantiate the theory of glaciohydraulic supercooling – he detected "bomb tritium," an isotope of hydrogen dispersed across the globe in the 1950s and early 1960s during nuclear testing, near the bed of some glaciers.

Under the old model of glacier building, tritium would be expected only near a glacier surface where snow slowly transforms to glacier ice. But Larson showed that tritium can also occur near the glacier’s base as the result of recent snowmelt refreezing due to glaciohydraulic supercooling.

In addition to Larson, the paper, "Stabilizing feedbacks in glacier-bed erosion," is authored by Richard Alley of Pennsylvania State University; Daniel Lawson of CRREL; Edward Evenson of Lehigh University in Bethlehem, Pa.; and Gregory Baker of the University of Buffalo.

Grahame Larson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>