Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists rewrite laws of glacial erosion

14.08.2003


Glaciers, it turns out, aren’t so different from people – they can gain weight in their bottoms and be less active, scientists have discovered.



Glaciers, the heavyweights of landscape erosion, grow not just from snow accumulating on their surfaces but also from beneath by freezing of meltwater which can affect the rate at which they can erode, according to a team of scientists, including one from Michigan State University.

Their discovery, reported in a cover story in the Aug. 14 issue of the international science journal Nature, paints a new picture of how glaciers sculpture and erode the earth’s landscapes.


"Glaciers have a profound effect on the landscape, especially in mountainous regions, and this research allows us to understand how glaciers accomplish this," said Grahame Larson, a professor of geological sciences at MSU.

Larson was part of a team of scientists who made winter treks to Alaskan and Icelandic glaciers to understand how glaciers erode and transport sediment, research funded by the National Science Foundation and the Cold Regions Research and Engineering Laboratory in Hanover, N.H.

The researchers’ interest was sparked when they observed that fountains of meltwater rushing from some glacier margins spawned icy rims. They eventually were able to link this phenomenon of nature to the less lyrical but instantly identifiable event of creating ice when one pops open a can of very cold soda just pulled from an ice chest.

Larson explained that rapidly transferring ice-cold water from a high pressure environment – be it the inside of a can of soda or beneath a hulking glacier – to a lower pressure environment causes ice to form.

The soda-can effect gets a new name: glaciohydraulic supercooling. In the case of glaciers, this frazil ice forms when meltwater at the glacier bed rushes up a steeply rising slope. The new ice then clogs drainage ways at the glacier bed, dumping sediment, thus reducing the meltwater’s (and glacier’s) ability to erode. This action is called stabilizing feedback and results in the formation of a new dirty-ice layer along the glacier’s underbelly.

"This is new," Larson said. "We’re introducing laws of erosion for glaciers, and thus making it easier to understanding how glaciers subdue mountains."

Larson’s work at MSU helped to substantiate the theory of glaciohydraulic supercooling – he detected "bomb tritium," an isotope of hydrogen dispersed across the globe in the 1950s and early 1960s during nuclear testing, near the bed of some glaciers.

Under the old model of glacier building, tritium would be expected only near a glacier surface where snow slowly transforms to glacier ice. But Larson showed that tritium can also occur near the glacier’s base as the result of recent snowmelt refreezing due to glaciohydraulic supercooling.


In addition to Larson, the paper, "Stabilizing feedbacks in glacier-bed erosion," is authored by Richard Alley of Pennsylvania State University; Daniel Lawson of CRREL; Edward Evenson of Lehigh University in Bethlehem, Pa.; and Gregory Baker of the University of Buffalo.

Grahame Larson | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>