Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia research examines mega earthquake threats

11.08.2003


New use for seismic reflection data: revealing the most dangerous fault lines on Earth



Researchers have found an important new application for seismic reflection data, commonly used to image geological structures and explore for oil and gas. Recently published in the journal Nature, new use of reflection data may prove crucial to understanding the potential for mega earthquakes.

Mladen Nedimovic, the lead author and a scientist at the Lamont-Doherty Earth Observatory, a member of the Earth Institute at Columbia University, examined reflection data collected on the northern Cascadia margin off the coast of Vancouver Island. Cascadia margin is an area where the north Pacific seafloor is being pushed under the continental margin of North America. Locations where oceanic plates are underthrusting the continents are known as subduction zones. Within subduction zones are enormous faults called megathrusts, the places where the two tectonic plates meet and interface one another. Megathrusts are the source of the largest and most devastating earthquakes on Earth.


From the reflection data, Nedimovic and his coauthors mapped the locked zone on the megathrust along the northern Cascadia margin, which hosts the populous cities of Vancouver and Seattle. Locked zones, where geological structures beneath the surface are tightly interfaced, build up enormous pressure as the Earth shifts. In 1700, the pressure beneath the Cascadia margin was released, resulting in a magnitude 9 earthquake that devastated the region. A magnitude 9 earthquake releases over 1000 times more energy than was released during the magnitude 6.8 Nisqually earthquake that shook Seattle two years ago.

Currently, dislocation and thermal modeling are used for mapping locked zones, however, both methods rely on many assumptions about Earth’s structure that may limit their accuracy. In fact, for the northern Cascadia margin, estimates of the locked zone using these techniques indicate that a 36-mile (~60 km) swath of land from the subduction trench toward Vancouver Island is locked. Nedimovic’s reflection analysis shows that it is more likely to be a 56-mile (~90 km) swath, extending the zone some 20 miles (~30 km) closer to land. If this is accurate, rapidly growing inland cities face a greater threat from megathrust earthquake hazards than previously anticipated. The occurrence rate for great earthquakes on the Cascadia megathrust is approximately every 200 to 800 years. We are currently within the timeframe where another large earthquake is expected, with the last earthquake having occurred over 300 years ago.

Seismic and aseismic slip occurs on different parts of a megathrust, at different depths, temperatures, and pressures, and due to different types of rock deformation. Brittle rock failure affects a narrow zone around the thrust where seismic slip is observed, and plastic deformation affects a much wider area above the thrust where the slip is slow and aseismic. Seismic reflection imaging reveals the variations in structures along the megathrust and can be used for detailed mapping of locked and slow-slipping zones.

"Deep seismic reflection images from Alaska, Chile, and Japan show a similar broad reflection band above the megathrust in the region of stable sliding and thin thrust reflections further seaward where the megathrust is locked, suggesting that reflection imaging may be a globally important predictive tool for determining the maximum expected rupture area in great subduction earthquakes," said Nedimovic. " Mega earthquakes have been instrumentally recorded for all three regions making them potential targets for a future investigation to confirm the reflection method and improve characterization of megathrust seismic hazards in the study area."

The northern Cascadia margin study was funded by the National Earthquake Hazards Reduction Program of the United States Geological Survey and by the Geological Survey of Canada. Mladen Nedimovic and his collaborators are submitting a proposal to National Science Foundation to carry out a megathrust seismic hazards characterization study along the southern Alaska margin.

Jill Stoddard | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>