Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia research examines mega earthquake threats

11.08.2003


New use for seismic reflection data: revealing the most dangerous fault lines on Earth



Researchers have found an important new application for seismic reflection data, commonly used to image geological structures and explore for oil and gas. Recently published in the journal Nature, new use of reflection data may prove crucial to understanding the potential for mega earthquakes.

Mladen Nedimovic, the lead author and a scientist at the Lamont-Doherty Earth Observatory, a member of the Earth Institute at Columbia University, examined reflection data collected on the northern Cascadia margin off the coast of Vancouver Island. Cascadia margin is an area where the north Pacific seafloor is being pushed under the continental margin of North America. Locations where oceanic plates are underthrusting the continents are known as subduction zones. Within subduction zones are enormous faults called megathrusts, the places where the two tectonic plates meet and interface one another. Megathrusts are the source of the largest and most devastating earthquakes on Earth.


From the reflection data, Nedimovic and his coauthors mapped the locked zone on the megathrust along the northern Cascadia margin, which hosts the populous cities of Vancouver and Seattle. Locked zones, where geological structures beneath the surface are tightly interfaced, build up enormous pressure as the Earth shifts. In 1700, the pressure beneath the Cascadia margin was released, resulting in a magnitude 9 earthquake that devastated the region. A magnitude 9 earthquake releases over 1000 times more energy than was released during the magnitude 6.8 Nisqually earthquake that shook Seattle two years ago.

Currently, dislocation and thermal modeling are used for mapping locked zones, however, both methods rely on many assumptions about Earth’s structure that may limit their accuracy. In fact, for the northern Cascadia margin, estimates of the locked zone using these techniques indicate that a 36-mile (~60 km) swath of land from the subduction trench toward Vancouver Island is locked. Nedimovic’s reflection analysis shows that it is more likely to be a 56-mile (~90 km) swath, extending the zone some 20 miles (~30 km) closer to land. If this is accurate, rapidly growing inland cities face a greater threat from megathrust earthquake hazards than previously anticipated. The occurrence rate for great earthquakes on the Cascadia megathrust is approximately every 200 to 800 years. We are currently within the timeframe where another large earthquake is expected, with the last earthquake having occurred over 300 years ago.

Seismic and aseismic slip occurs on different parts of a megathrust, at different depths, temperatures, and pressures, and due to different types of rock deformation. Brittle rock failure affects a narrow zone around the thrust where seismic slip is observed, and plastic deformation affects a much wider area above the thrust where the slip is slow and aseismic. Seismic reflection imaging reveals the variations in structures along the megathrust and can be used for detailed mapping of locked and slow-slipping zones.

"Deep seismic reflection images from Alaska, Chile, and Japan show a similar broad reflection band above the megathrust in the region of stable sliding and thin thrust reflections further seaward where the megathrust is locked, suggesting that reflection imaging may be a globally important predictive tool for determining the maximum expected rupture area in great subduction earthquakes," said Nedimovic. " Mega earthquakes have been instrumentally recorded for all three regions making them potential targets for a future investigation to confirm the reflection method and improve characterization of megathrust seismic hazards in the study area."

The northern Cascadia margin study was funded by the National Earthquake Hazards Reduction Program of the United States Geological Survey and by the Geological Survey of Canada. Mladen Nedimovic and his collaborators are submitting a proposal to National Science Foundation to carry out a megathrust seismic hazards characterization study along the southern Alaska margin.

Jill Stoddard | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>