Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia research examines mega earthquake threats

11.08.2003


New use for seismic reflection data: revealing the most dangerous fault lines on Earth



Researchers have found an important new application for seismic reflection data, commonly used to image geological structures and explore for oil and gas. Recently published in the journal Nature, new use of reflection data may prove crucial to understanding the potential for mega earthquakes.

Mladen Nedimovic, the lead author and a scientist at the Lamont-Doherty Earth Observatory, a member of the Earth Institute at Columbia University, examined reflection data collected on the northern Cascadia margin off the coast of Vancouver Island. Cascadia margin is an area where the north Pacific seafloor is being pushed under the continental margin of North America. Locations where oceanic plates are underthrusting the continents are known as subduction zones. Within subduction zones are enormous faults called megathrusts, the places where the two tectonic plates meet and interface one another. Megathrusts are the source of the largest and most devastating earthquakes on Earth.


From the reflection data, Nedimovic and his coauthors mapped the locked zone on the megathrust along the northern Cascadia margin, which hosts the populous cities of Vancouver and Seattle. Locked zones, where geological structures beneath the surface are tightly interfaced, build up enormous pressure as the Earth shifts. In 1700, the pressure beneath the Cascadia margin was released, resulting in a magnitude 9 earthquake that devastated the region. A magnitude 9 earthquake releases over 1000 times more energy than was released during the magnitude 6.8 Nisqually earthquake that shook Seattle two years ago.

Currently, dislocation and thermal modeling are used for mapping locked zones, however, both methods rely on many assumptions about Earth’s structure that may limit their accuracy. In fact, for the northern Cascadia margin, estimates of the locked zone using these techniques indicate that a 36-mile (~60 km) swath of land from the subduction trench toward Vancouver Island is locked. Nedimovic’s reflection analysis shows that it is more likely to be a 56-mile (~90 km) swath, extending the zone some 20 miles (~30 km) closer to land. If this is accurate, rapidly growing inland cities face a greater threat from megathrust earthquake hazards than previously anticipated. The occurrence rate for great earthquakes on the Cascadia megathrust is approximately every 200 to 800 years. We are currently within the timeframe where another large earthquake is expected, with the last earthquake having occurred over 300 years ago.

Seismic and aseismic slip occurs on different parts of a megathrust, at different depths, temperatures, and pressures, and due to different types of rock deformation. Brittle rock failure affects a narrow zone around the thrust where seismic slip is observed, and plastic deformation affects a much wider area above the thrust where the slip is slow and aseismic. Seismic reflection imaging reveals the variations in structures along the megathrust and can be used for detailed mapping of locked and slow-slipping zones.

"Deep seismic reflection images from Alaska, Chile, and Japan show a similar broad reflection band above the megathrust in the region of stable sliding and thin thrust reflections further seaward where the megathrust is locked, suggesting that reflection imaging may be a globally important predictive tool for determining the maximum expected rupture area in great subduction earthquakes," said Nedimovic. " Mega earthquakes have been instrumentally recorded for all three regions making them potential targets for a future investigation to confirm the reflection method and improve characterization of megathrust seismic hazards in the study area."

The northern Cascadia margin study was funded by the National Earthquake Hazards Reduction Program of the United States Geological Survey and by the Geological Survey of Canada. Mladen Nedimovic and his collaborators are submitting a proposal to National Science Foundation to carry out a megathrust seismic hazards characterization study along the southern Alaska margin.

Jill Stoddard | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>