Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique NASA Satellite Watches Rainfall from Space

14.05.2003


Your local weather forecaster uses Doppler radar systems, covering U.S. regions, to estimate rainfall and flooding, but NASA research satellites can see rainfall worldwide.



Data from NASA’s Tropical Rainfall Measuring Mission (TRMM)satellite, along with information from other satellites, allows researchers to see how much rain is falling over most of the world every three hours. This capability enables scientists to daily map areas of potential flooding.

These maps, available to the public on the Internet, will help water resource managers and scientists around the world by providing near-real time data of rainfall and flood potential. TRMM is considered a unique "rain gauge in the sky," because its instruments can look into clouds to determine rainfall, while other satellites can only see flooded areas after floods have occurred.


Because of its extraordinary capability, TRMM is used to calibrate and fine-tune measurements of rainfall taken by other satellites, leading to current updated records on a global scale. Once baselines are established, researchers use the higher quality TRMM data wherever possible and fill in the gaps with data from other satellites to get a more complete picture of rainfall around the world.

"This ability to detect potential floods is extremely useful for disaster monitoring," said Robert Adler, TRMM Project scientist at the Goddard Space Flight Center, Greenbelt, Md.

"The rainfall maps are also useful in assessing the state of crops in remote regions, especially in the tropics," he said.

Maps that show areas of potential floods use precipitation radar data and high-resolution measurements of water content of clouds made by microwave radiometers. The maps span the Earth from 50 degrees north latitude to 50 degrees south latitude (an area just north of the U.S.-Canadian border and south to the tip of Argentina).

There are three variations of the rainfall accumulation maps, including 24-hour maps showing areas where more than 35 mm (1.37 inches) of rain has accumulated; maps with three-day accumulations of more than 100 mm (3.93 inches); and maps depicting areas with weeklong accumulations of more than 200 mm (7.87 inches).

Another map product, updated every three hours, shows a global snapshot of rainfall. A seven-day "movie loop" of the images allows users to track storms as they travel over land and oceans around the globe. Researchers use these near-global rainfall maps to monitor formation and dissipation of El Nino/Southern Oscillation conditions, soil moisture, and ocean salinity. These maps also are useful to water resource managers and farmers around the world.

The Adler led team of NASA scientists produced these TRMM rainfall and flood potential maps. The maps merge data from the TRMM Microwave Imager Precipitation Radar with information from other microwave satellites and geosynchronous weather satellite infrared data. Exploiting the strengths of multiple data sources increases the accuracy of the maps.

TRMM is a joint U.S.-Japanese mission and part of NASA’s Earth Science Enterprise, a long-term research program designed to study the Earth’s land, oceans, air, ice and life as a total system. The TRMM satellite was launched on November 27, 1997.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards, using the unique vantage point of space.


For information and TRMM images on the Internet, visit: http://www.gsfc.nasa.gov/topstory/2003/0425floods.html

For information about TRMM rain and flood maps on the Internet, visit: http://trmm.gsfc.nasa.gov/

For information about NASA and Earth Science projects on the Internet, visit:

Krishna Ramanujan | Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0425floods.html
http://trmm.gsfc.nasa.gov/
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>