Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upside-down underwater telescope to study visitors from space

18.03.2003


Scientists from the Universities of Sheffield and Leeds will soon be able to study some of the most elusive particles known to man, thanks to a giant telescope under the sea that looks down towards the centre of the Earth rather than up into the sky.



Together with fellow scientists from across Europe they are building a telescope 2400m (one and a half miles) under the Mediterranean Sea to detect neutrinos. These tiny elementary particles hardly exist at all, having no charge and almost no mass. Neutrinos zoom through the earth at almost the speed of light, travelling here from some of the most extreme regions of the cosmos. Understanding them will give us a new view of the Universe and may allow scientists to confirm the existence of dark matter. Dark matter is believed to make up some of the 90 per cent of the missing mass of the Universe that has never been detected.

The project, costing 20 million Euros, is the result of collaboration between 150 physicists and astronomers from sixteen European organisations.


The telescope will consist of ten 480m long strings fixed to the seabed, each with a weight at one end and a buoy at the other. Each string will have around 30 light detection photo-multipliers distributed along the entire length. The strings are connected, via a junction box on the seabed, to a 40km fibre optic cable, which relays information back to a base station on the south coast of France. Today the Nautille submarine has connected the first string to the cable using a robotic arm.

Dr Lee Thompson of the Physics and Astronomy Department at University of Sheffield is the UK project leader for Antares. He explains how the telescope works, "The photo-multipliers detect the light given off on the rare occasions when neutrinos interact with material (such as rock in the seabed or even seawater) and become muons. Muons are particles that are similar to electrons but heavier. When travelling through the water the muons give off a blue light, which the telescope will detect and record.

"Neutrinos have no charge so they always travel in a straight line. By following the path of the muons we will be able to determine where the neutrinos came from and discover the source of their creation.

"The reason that we need to build the telescope under the sea is that the water prevents muons from cosmic rays in the atmosphere from contaminating our study. By looking down the Earth also acts as a filter, as muons that haven?t been created from a neutrino will be absorbed before they can get into the study area."

Jon Pyle | alfa
Further information:
http://www.shef.ac.uk/uni/academic/N-Q/phys/research/pa/antares/faq.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>