Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upside-down underwater telescope to study visitors from space

18.03.2003


Scientists from the Universities of Sheffield and Leeds will soon be able to study some of the most elusive particles known to man, thanks to a giant telescope under the sea that looks down towards the centre of the Earth rather than up into the sky.



Together with fellow scientists from across Europe they are building a telescope 2400m (one and a half miles) under the Mediterranean Sea to detect neutrinos. These tiny elementary particles hardly exist at all, having no charge and almost no mass. Neutrinos zoom through the earth at almost the speed of light, travelling here from some of the most extreme regions of the cosmos. Understanding them will give us a new view of the Universe and may allow scientists to confirm the existence of dark matter. Dark matter is believed to make up some of the 90 per cent of the missing mass of the Universe that has never been detected.

The project, costing 20 million Euros, is the result of collaboration between 150 physicists and astronomers from sixteen European organisations.


The telescope will consist of ten 480m long strings fixed to the seabed, each with a weight at one end and a buoy at the other. Each string will have around 30 light detection photo-multipliers distributed along the entire length. The strings are connected, via a junction box on the seabed, to a 40km fibre optic cable, which relays information back to a base station on the south coast of France. Today the Nautille submarine has connected the first string to the cable using a robotic arm.

Dr Lee Thompson of the Physics and Astronomy Department at University of Sheffield is the UK project leader for Antares. He explains how the telescope works, "The photo-multipliers detect the light given off on the rare occasions when neutrinos interact with material (such as rock in the seabed or even seawater) and become muons. Muons are particles that are similar to electrons but heavier. When travelling through the water the muons give off a blue light, which the telescope will detect and record.

"Neutrinos have no charge so they always travel in a straight line. By following the path of the muons we will be able to determine where the neutrinos came from and discover the source of their creation.

"The reason that we need to build the telescope under the sea is that the water prevents muons from cosmic rays in the atmosphere from contaminating our study. By looking down the Earth also acts as a filter, as muons that haven?t been created from a neutrino will be absorbed before they can get into the study area."

Jon Pyle | alfa
Further information:
http://www.shef.ac.uk/uni/academic/N-Q/phys/research/pa/antares/faq.html

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>