Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upside-down underwater telescope to study visitors from space

18.03.2003


Scientists from the Universities of Sheffield and Leeds will soon be able to study some of the most elusive particles known to man, thanks to a giant telescope under the sea that looks down towards the centre of the Earth rather than up into the sky.



Together with fellow scientists from across Europe they are building a telescope 2400m (one and a half miles) under the Mediterranean Sea to detect neutrinos. These tiny elementary particles hardly exist at all, having no charge and almost no mass. Neutrinos zoom through the earth at almost the speed of light, travelling here from some of the most extreme regions of the cosmos. Understanding them will give us a new view of the Universe and may allow scientists to confirm the existence of dark matter. Dark matter is believed to make up some of the 90 per cent of the missing mass of the Universe that has never been detected.

The project, costing 20 million Euros, is the result of collaboration between 150 physicists and astronomers from sixteen European organisations.


The telescope will consist of ten 480m long strings fixed to the seabed, each with a weight at one end and a buoy at the other. Each string will have around 30 light detection photo-multipliers distributed along the entire length. The strings are connected, via a junction box on the seabed, to a 40km fibre optic cable, which relays information back to a base station on the south coast of France. Today the Nautille submarine has connected the first string to the cable using a robotic arm.

Dr Lee Thompson of the Physics and Astronomy Department at University of Sheffield is the UK project leader for Antares. He explains how the telescope works, "The photo-multipliers detect the light given off on the rare occasions when neutrinos interact with material (such as rock in the seabed or even seawater) and become muons. Muons are particles that are similar to electrons but heavier. When travelling through the water the muons give off a blue light, which the telescope will detect and record.

"Neutrinos have no charge so they always travel in a straight line. By following the path of the muons we will be able to determine where the neutrinos came from and discover the source of their creation.

"The reason that we need to build the telescope under the sea is that the water prevents muons from cosmic rays in the atmosphere from contaminating our study. By looking down the Earth also acts as a filter, as muons that haven?t been created from a neutrino will be absorbed before they can get into the study area."

Jon Pyle | alfa
Further information:
http://www.shef.ac.uk/uni/academic/N-Q/phys/research/pa/antares/faq.html

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>