Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind’s energy transfer to ocean quantified for first time

06.03.2003


Breakthrough could help resolve serious problems in oceanography and climate research



Scientists at Johns Hopkins University and the University of California-Irvine have finally been able to field-test theories about how wind transfers energy to ocean waves, a topic of debate since the 19th century that had previously proved impossible to settle experimentally.

The new results may help lead the way to the resolution of a longstanding problem in scientists’ understanding of how energy and momentum are exchanged between the atmosphere and the oceans.


Scientists have shown that interactions between wind and the surface of the ocean creates waves of varying sizes, from the waves that crash ashore at a beach to the waves that imperil ships at sea during storms. They have also demonstrated that waves can grow by extracting energy from the wind. However, when they tried to bring together models for atmospheric dynamics and ocean circulation, the ocean models suggested that the atmosphere should contribute much more energy to the ocean than the atmospheric models seem to suggest the atmosphere could possibly provide.

The new findings in Nature are focused on kinetic energy and momentum, rather than thermal energy, but could potentially help scientists improve climate modeling research by further refining their picture of energy flow between the atmosphere and the ocean. They will also help efforts to improve prediction of weather and wave activity.

"Until now, we’ve had lots of theories [on wind-to-wave energy transfer] but no experimental confirmation because it’s been so hard to make the theory and the experiment talk to each other," says Tihomir Hristov, an associate research scientist at Johns Hopkins and lead author on the new paper. "The patterns we see in the new data are very consistent with the theory originally proposed by John Miles in 1957."

Hristov notes that speculation about wind-wave energy transfer dates all the way back to the work of Lord Kelvin, a 19th-century British physicist, mathematician and inventor. Attempts to study the transfer in laboratory simulations of the ocean have met with only limited success, Hristov said.

"There’s a parameter that’s involved in the calculations for studying this transfer, the Reynolds number, that is different over the ocean than it is in the laboratory simulations," he explains.

Study of the energy transfer over the actual ocean also presented scientists with a problem: a completely uncontrollable mix of chaotic variables like wave height and speed, as well as wind turbulence.

Hristov and his colleagues at the University of California, Scott Miller and Carl Friehe, have begun to tame this wild and wooly mix of variables by taking measurements from a device known as the Floating Instrument Platform, or FLIP. Owned by the U.S. Navy and operated by the Marine Physical Laboratory of the Scripps Institution of Oceanography, FLIP is a 355-foot-long platform that scientists can haul out to sea and turn vertical to create a stable ocean perch for taking measurements. (The platform’s design gives it too much inertia for it to bob in the waves, Hristov explains.)

To avoid airflow distortions created by the platform itself, researchers monitored wind speed with instruments on a mast extending away from the platform. They simultaneously measured wave height underneath the mast. In 1998, they announced that these observations had enabled them to develop a method to separate random, turbulent air motion from airflow involved in transferring energy to waves.

The follow-up study, published this week in Nature, found a pattern of wind-wave interaction that matched "very consistently" with Miles’ model over a period of five days, Hristov said.

Hristov remembers that Miles, a professor at the Scripps Institution and The University of California at San Diego, came to Johns Hopkins in 1998 to speak at a meeting in honor of Owen Philips, a professor of earth and planetary sciences at Johns Hopkins who produced a competing wind-wave interaction model in 1957. At one of the meetings, Miles spoke of his wind-wave interaction theory.

"A central concept in his theory is the so-called ’critical layer,’" Hristov says. "Somebody from the audience asked him what he thought about the critical layer. And, since at that time no experiments had suggested otherwise, he said, ’The critical layer is just a convenient mathematical notion.’

"Our data are now showing that the theory has been right all along," Hristov says, smiling. "The critical layer is observable, and it is essential in the energy transfer."

Hristov is currently preparing for a follow-up study that will be based on observations taken off the coast of Massachusetts.


This research was funded by the Office of Naval Research’s Marine Meteorology section.

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251


Michael Purdy | EurekAlert!
Further information:
http://www.jhu.edu/
http://sio.ucsd.edu/about_scripps/index.html
http://sio.ucsd.edu/about_scripps/index.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>