Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind’s energy transfer to ocean quantified for first time

06.03.2003


Breakthrough could help resolve serious problems in oceanography and climate research



Scientists at Johns Hopkins University and the University of California-Irvine have finally been able to field-test theories about how wind transfers energy to ocean waves, a topic of debate since the 19th century that had previously proved impossible to settle experimentally.

The new results may help lead the way to the resolution of a longstanding problem in scientists’ understanding of how energy and momentum are exchanged between the atmosphere and the oceans.


Scientists have shown that interactions between wind and the surface of the ocean creates waves of varying sizes, from the waves that crash ashore at a beach to the waves that imperil ships at sea during storms. They have also demonstrated that waves can grow by extracting energy from the wind. However, when they tried to bring together models for atmospheric dynamics and ocean circulation, the ocean models suggested that the atmosphere should contribute much more energy to the ocean than the atmospheric models seem to suggest the atmosphere could possibly provide.

The new findings in Nature are focused on kinetic energy and momentum, rather than thermal energy, but could potentially help scientists improve climate modeling research by further refining their picture of energy flow between the atmosphere and the ocean. They will also help efforts to improve prediction of weather and wave activity.

"Until now, we’ve had lots of theories [on wind-to-wave energy transfer] but no experimental confirmation because it’s been so hard to make the theory and the experiment talk to each other," says Tihomir Hristov, an associate research scientist at Johns Hopkins and lead author on the new paper. "The patterns we see in the new data are very consistent with the theory originally proposed by John Miles in 1957."

Hristov notes that speculation about wind-wave energy transfer dates all the way back to the work of Lord Kelvin, a 19th-century British physicist, mathematician and inventor. Attempts to study the transfer in laboratory simulations of the ocean have met with only limited success, Hristov said.

"There’s a parameter that’s involved in the calculations for studying this transfer, the Reynolds number, that is different over the ocean than it is in the laboratory simulations," he explains.

Study of the energy transfer over the actual ocean also presented scientists with a problem: a completely uncontrollable mix of chaotic variables like wave height and speed, as well as wind turbulence.

Hristov and his colleagues at the University of California, Scott Miller and Carl Friehe, have begun to tame this wild and wooly mix of variables by taking measurements from a device known as the Floating Instrument Platform, or FLIP. Owned by the U.S. Navy and operated by the Marine Physical Laboratory of the Scripps Institution of Oceanography, FLIP is a 355-foot-long platform that scientists can haul out to sea and turn vertical to create a stable ocean perch for taking measurements. (The platform’s design gives it too much inertia for it to bob in the waves, Hristov explains.)

To avoid airflow distortions created by the platform itself, researchers monitored wind speed with instruments on a mast extending away from the platform. They simultaneously measured wave height underneath the mast. In 1998, they announced that these observations had enabled them to develop a method to separate random, turbulent air motion from airflow involved in transferring energy to waves.

The follow-up study, published this week in Nature, found a pattern of wind-wave interaction that matched "very consistently" with Miles’ model over a period of five days, Hristov said.

Hristov remembers that Miles, a professor at the Scripps Institution and The University of California at San Diego, came to Johns Hopkins in 1998 to speak at a meeting in honor of Owen Philips, a professor of earth and planetary sciences at Johns Hopkins who produced a competing wind-wave interaction model in 1957. At one of the meetings, Miles spoke of his wind-wave interaction theory.

"A central concept in his theory is the so-called ’critical layer,’" Hristov says. "Somebody from the audience asked him what he thought about the critical layer. And, since at that time no experiments had suggested otherwise, he said, ’The critical layer is just a convenient mathematical notion.’

"Our data are now showing that the theory has been right all along," Hristov says, smiling. "The critical layer is observable, and it is essential in the energy transfer."

Hristov is currently preparing for a follow-up study that will be based on observations taken off the coast of Massachusetts.


This research was funded by the Office of Naval Research’s Marine Meteorology section.

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251


Michael Purdy | EurekAlert!
Further information:
http://www.jhu.edu/
http://sio.ucsd.edu/about_scripps/index.html
http://sio.ucsd.edu/about_scripps/index.html

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>