Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain formation of stone circles and other strange patterns in northern regions

17.01.2003


Mysterious patterns arise through simple feedback mechanisms and self-organization



Perfect circles of stones cover the ground in parts of Alaska and the Norwegian islands of Spitsbergen. Elsewhere in the far north, stones form other striking patterns on the ground: polygons, stripes, islands, and labyrinths. No, pranksters are not at work in these remote areas, nor are aliens, elves, or any other outside forces moving the stones around. According to scientists who have studied the phenomenon, cyclic freezing and thawing of the ground drives simple feedback mechanisms that generate these remarkable patterns.

"The patterns form by self-organization, and the same fundamental processes are at work in the formation of all these different patterns," said Mark Kessler, a postdoctoral researcher in the Earth Sciences Department at the University of California, Santa Cruz.


As a graduate student working with Brad Werner, a professor of geophysics at UC San Diego, Kessler developed a numerical model of the processes involved in the self-organization of these patterns, known to geologists as "sorted patterned ground." Kessler and Werner reported their findings in a paper published in the January 17 issue of the journal Science.

Over the years, other scientists have proposed various explanations for these unusual patterns of stones and soil. But until now, no single explanation has been able to account for the full range of patterns seen in nature.

"The model I developed is essentially a hypothesis about what is important in the formation of patterned ground," Kessler said. "When you run the model on a computer, you can see the evolution of the pattern over time, and you can also see how small changes in key parameters result in a transition from one pattern to another."

According to Kessler, the patterns result primarily from the interaction of two mechanisms: lateral sorting, which moves soil toward areas of high soil concentration and stones toward areas of high stone concentration; and squeezing of stone domains, which causes stones to move within linear piles of stones and lengthens these lines of stones. The relative strengths of lateral sorting and squeezing, plus the slope of the ground and the ratio of stones to soil, are the factors that determine which pattern will emerge, Kessler said.

Driving the mechanisms of lateral sorting and squeezing is the phenomenon of frost heave--the expansion of fine-grained soils during freezing of wet ground. Frost heave results from the formation of discrete ice lenses in the soil. The soil near the surface expands because water flows up through the soil toward the ice lens as it forms (and to a lesser extent because the water expands as it freezes).

"If you start with a random layer of stones over a layer of soil, frost heave makes the soil layer unstable and deforms the interface between stones and soil," Kessler said.

As an ice lens grows near this interface, it pushes outward on the stones and also dessicates and compresses the soil below it. Where the interface between stones and soil is inclined, this causes lateral displacement of both stones and soil. When the ground thaws, the compressed soil reabsorbs water and expands. But the expansion occurs vertically, so it does not reverse the lateral displacement of soil by frost heave. Furthermore, the greater compressibility of soil-rich areas results in soil transport toward those areas.

Other processes are also involved in lateral sorting, but the end result is a positive feedback loop in which cycles of freezing and thawing cause soil-rich areas to attract more soil and stone-rich areas to attract more stones.

Once stones have been sorted into concentrated areas, or "stone domains," frost heave also squeezes and uplifts the stone domains. Differential uplift causes stones to migrate along the axis of a linear stone domain and lengthens the domain.

"The pattern depends on the relative strengths of lateral sorting, which actually brings stones back into areas of high stone concentration, and squeezing, which moves stones along," Kessler said. "One of the real mysteries to me was how you can get labyrinths or islands of stones in one location and polygons in another, when the ratio of stones to soil is the same in both places. Our model indicates that you get polygons when the squeezing is strong enough to counteract the effects of lateral sorting."

There are a variety of factors that can lead to differences in the relative strengths of squeezing and lateral sorting, he said. These include the compressibility of the soil and the size of the stones.

Another important factor is the extent to which the stone domains are confined by the soil, which determines whether squeezing will mainly cause stones to move along the stone domains or roll back onto the soil domains. In their model, Kessler and Werner can vary the degree of confinement, the concentration of stones, and the slope of the ground to produce circles, labyrinths, islands, stripes, and polygons of stones.

The researchers compared the patterns generated by the model with those observed in nature, using low-elevation aerial photographs of polygon networks in Alaska. Quantitative measurements of the natural and computer-generated polygons showed they were consistent. For example, one of the interesting features of polygon patterns, both in the model and in nature, is the tendency to form three-way intersections with equal angles between the intersecting lines, Kessler said.

One reason these patterns have remained unexplained for so long may be their occurence in remote areas, far from the temperate zone where most scientists live, Kessler said. "If these patterns were on the ground around here, I think we would have figured them out a long time ago. These landscapes are so amazing, it’s the kind of thing that really calls out for an explanation."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu/

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>