Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic ’slinky effect’ may power aurora

17.01.2003


The spectacular aurora borealis displays that light up the northern nights could be powered by a gigantic "slinky" effect in Earth’s magnetic field lines, according to research performed at the University of Minnesota. Earth’s magnetic field resemble a slinky in that when "wiggled," it undulates in waves that travel down the field lines at speeds up to 25 million miles per hour. These waves can pass energy to electrons, accelerating them along the magnetic field lines toward Earth. When the electrons hit atoms in the atmosphere, the atoms become excited and produce the colors of the aurora. Using electric and magnetic field data and images from NASA’s POLAR satellite, the researchers showed that energy from such waves is sufficient to power auroras and that statistically, the waves occur in the same locations as auroras--in a ring around the poles. The work will be published in the Jan. 17 issue of Science.




"We don’t know exactly what wiggles the field lines, but similar processes could explain the heating of the solar corona [the sun’s atmosphere], the release of energy during solar flares and the acceleration of the solar wind [a stream of charged particles from the sun]," said physics associate professor John Wygant, second author of the study. "At the edges of sunspots, other researchers have actually seen magnetic field lines waving. Understanding how such waves are caused and how they transmit energy is important to unraveling the complex processes behind larger-scale particle accelerations that occur, for example, in jets of material being ejected from black holes at the centers of galaxies." The paper’s first author is Andreas Keiling, who headed the study while a doctoral student and, later, a research scientist at the University of Minnesota. He is now at the Center for Space Research on Radiation in Toulouse, France.

The ultimate source of energy for auroras is the solar wind. Flowing with the wind--which is mostly single protons and electrons--is a magnetic field that encounters Earth’s own field tens of thousands of miles above the planet surface. Earth is like a huge bar magnet, with magnetic field lines coming out near the poles, curving through space, and re-entering near the opposite pole. When the solar wind’s magnetic field sweeps by, it joins with some of Earth’s magnetic field lines and stretches them into space on the night side of Earth. The stretching energizes this part of the magnetic field until it suddenly "snaps" away from the solar wind and reconnects with Earth. This process, called reconnection, may send waves rippling through the magnetic field, like wiggling a slinky, said Wygant.


Energy from the waves then passes to electrons, sending them in beams along the magnetic field lines into the atmosphere. The color of the aurora depends on how deeply the electrons penetrate the atmosphere and which atoms they excite. Measurements of electrical energy at altitudes near 12,000 miles, where the electrons are accelerated, showed sufficient energy from the waves to power auroras, Wygant said.

Auroras also occur in south polar regions, where they are known as the aurora australis. Waves in the magnetic field lines are called Alfven waves, after Hannes Alfven, a Swedish physicist who helped found the field of plasma physics, said Wygant.

POLAR’s electric field measurements were performed by an instrument built by the University of California at Berkeley. Other authors of the paper are Cynthia Cattell, physics professor, University of Minnesota; Forrest Mozer, professor of physics, Berkeley; and Christopher Russell, professor of physics, UCLA. The work was supported by NASA.



POLAR satellite images of the auroral ring are at www1.umn.edu/urelate/newsservice/aurora.html.

Contacts:
John Wygant, (510) 642-7297 (Jan. 13 and 14), (612) 626-8921 (Jan. 15 and later)
Cynthia Cattell, (612) 626-8918 (until noon Jan. 15)
Andreas Keiling, 33 (0) 561 55 66 60 (Toulouse, France)
Deane Morrison, University News Service, (612) 624-2346


Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/
http://www1.umn.edu/urelate/newsservice/aurora.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>