Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic ’slinky effect’ may power aurora

17.01.2003


The spectacular aurora borealis displays that light up the northern nights could be powered by a gigantic "slinky" effect in Earth’s magnetic field lines, according to research performed at the University of Minnesota. Earth’s magnetic field resemble a slinky in that when "wiggled," it undulates in waves that travel down the field lines at speeds up to 25 million miles per hour. These waves can pass energy to electrons, accelerating them along the magnetic field lines toward Earth. When the electrons hit atoms in the atmosphere, the atoms become excited and produce the colors of the aurora. Using electric and magnetic field data and images from NASA’s POLAR satellite, the researchers showed that energy from such waves is sufficient to power auroras and that statistically, the waves occur in the same locations as auroras--in a ring around the poles. The work will be published in the Jan. 17 issue of Science.




"We don’t know exactly what wiggles the field lines, but similar processes could explain the heating of the solar corona [the sun’s atmosphere], the release of energy during solar flares and the acceleration of the solar wind [a stream of charged particles from the sun]," said physics associate professor John Wygant, second author of the study. "At the edges of sunspots, other researchers have actually seen magnetic field lines waving. Understanding how such waves are caused and how they transmit energy is important to unraveling the complex processes behind larger-scale particle accelerations that occur, for example, in jets of material being ejected from black holes at the centers of galaxies." The paper’s first author is Andreas Keiling, who headed the study while a doctoral student and, later, a research scientist at the University of Minnesota. He is now at the Center for Space Research on Radiation in Toulouse, France.

The ultimate source of energy for auroras is the solar wind. Flowing with the wind--which is mostly single protons and electrons--is a magnetic field that encounters Earth’s own field tens of thousands of miles above the planet surface. Earth is like a huge bar magnet, with magnetic field lines coming out near the poles, curving through space, and re-entering near the opposite pole. When the solar wind’s magnetic field sweeps by, it joins with some of Earth’s magnetic field lines and stretches them into space on the night side of Earth. The stretching energizes this part of the magnetic field until it suddenly "snaps" away from the solar wind and reconnects with Earth. This process, called reconnection, may send waves rippling through the magnetic field, like wiggling a slinky, said Wygant.


Energy from the waves then passes to electrons, sending them in beams along the magnetic field lines into the atmosphere. The color of the aurora depends on how deeply the electrons penetrate the atmosphere and which atoms they excite. Measurements of electrical energy at altitudes near 12,000 miles, where the electrons are accelerated, showed sufficient energy from the waves to power auroras, Wygant said.

Auroras also occur in south polar regions, where they are known as the aurora australis. Waves in the magnetic field lines are called Alfven waves, after Hannes Alfven, a Swedish physicist who helped found the field of plasma physics, said Wygant.

POLAR’s electric field measurements were performed by an instrument built by the University of California at Berkeley. Other authors of the paper are Cynthia Cattell, physics professor, University of Minnesota; Forrest Mozer, professor of physics, Berkeley; and Christopher Russell, professor of physics, UCLA. The work was supported by NASA.



POLAR satellite images of the auroral ring are at www1.umn.edu/urelate/newsservice/aurora.html.

Contacts:
John Wygant, (510) 642-7297 (Jan. 13 and 14), (612) 626-8921 (Jan. 15 and later)
Cynthia Cattell, (612) 626-8918 (until noon Jan. 15)
Andreas Keiling, 33 (0) 561 55 66 60 (Toulouse, France)
Deane Morrison, University News Service, (612) 624-2346


Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/
http://www1.umn.edu/urelate/newsservice/aurora.html

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>