Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists studying two big craters on earth find two causes

28.10.2002


Two of the three largest impact craters on Earth have nearly the same size and structure, researchers say, but one was caused by a comet while the other was caused by an asteroid. These surprising results could have implications for where scientists might look for evidence of primitive life on Mars.



Susan Kieffer of the University of Illinois at Urbana-Champaign, Kevin Pope of Geo Eco Arc Research and Doreen Ames of Natural Resources Canada analyzed the structure and stratigraphy of the 65 million-year-old Chicxulub crater in Mexico and the 1.8 billion-year-old Sudbury crater in Canada.

Chicxulub is well preserved, but buried, and can be studied only by geophysical means, remote sensing and at a few distant sites on land where some ejecta is preserved. In contrast, Sudbury has experienced up to 4-6 kilometers of erosion, and is well exposed and highly studied by mining exploration companies because of its rich mineral resources.


By working back and forth with data from the two craters, the researchers were able to re-create the structures and then estimate the amount of melt in each structure. The amount of melt is critical for determining if long-lived hot-water circulation systems that might host life forms could have been formed after the impacts.

In their field studies, the researchers found that both craters were about 200 kilometers in diameter. In addition, they identified five ring-shaped structures with similar character and dimensions. A sixth ring -- the peak ring in the central basin -- was present at Chicxulub, but had been eroded away at Sudbury.

"While the size and structure of the two craters were similar, they differed greatly in the amount of impact melt that was produced," said Kieffer, who presented the team’s findings at the annual meeting of the Geological Society of America, held Oct. 27-30 in Denver.

"Through field studies, we determined that Chicxulub has about 18,000 cubic kilometers of impact melt, approximately four times the volume of water in Lake Michigan," Pope said. Sudbury has about 31,000 cubic kilometers of impact melt, approximately six times the volume of lakes Huron and Ontario combined, and nearly 70 percent more than the melt at Chicxulub. These differences in volume have significant implications about the amount of heat available to drive hot-water circulation systems.

The researchers then used an analytical cratering model to examine possible causes for the huge difference in melt. According to the simulation results, the difference in melt volume could be readily explained if Chicxulub -- the impact crater that doomed the dinosaurs -- was formed by an asteroid and Sudbury was formed by a comet.

"Our calculation of 18,000 cubic kilometers of impact melt at Chicxulub agreed well with model estimates for an asteroid striking at a 45 degree angle," said Kieffer, the Walgreen Professor of Geology at Illinois. "None of the comet impact examples came close to agreeing."

"In contrast, the Sudbury impact melt volume of 31,000 cubic kilometers fell between model estimates for a comet striking at an angle of 30-45 degrees", Kieffer said. "Similarly, none of the asteroid impact examples came close to agreeing with the Sudbury melt volume."

Another clue to the cratersÕ origins lies in the impact melts themselves. The majority of the excess melt at Sudbury is in the form of a melt-rich breccia Ð called suevite Ð inside the crater. This material tends to form in impacts where the crustal target rock contains a lot of water. Sudbury has much more suevite in the preserved crater than Chicxulub.

"The mystery was that there probably wasn’t a lot of water in the original rocks at Sudbury to account for the excess suevite," Kieffer said. "But in a comet impact of this size, somewhere around 1,400-2,000 cubic kilometers of water from the comet gets mixed into the impact melt, and that could play a major role in disrupting the melt and creating the excess suevite."

There is other independent evidence for an asteroid impact at Chicxulub, the team said, including the purported find of an asteroid fragment in an oceanic drill core, the amount of iridium spread around the world at the time of impact, and a telltale chromium 53 isotopic signature.

By studying the origin and structure of large impact craters on Earth, scientists might narrow the search for life on Mars. At Sudbury, for example, "there is evidence of a huge hydrothermal system that was driven by the heat of the impact melt," Ames said. "As a result, there was widespread hot spring activity on the crater floor possibly capable of supporting life."

The researchers are interested in "extrapolating these conclusions about comet and asteroid impacts to Martian conditions and asking where we might go to look for similar hydrothermal systems that could have hosted primitive life forms on Mars," Kieffer said. "Our next step is to model these hot-water circulation systems that were set up by the impact melts with fluid flow controlled by structures (fractures) inside the crater, and then extrapolate the results to Martian conditions."

The National Aeronautics and Space Administration and the Natural History Museum of Los Angeles County funded this work

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>