Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 years of climate change -- and possible futures

20.09.2002


A new study using a computer climate model to simulate the last 50 years of climate changes, projects warming over the next 50 years regardless of whether or not nations curb their greenhouse gas emissions soon. If no emission reductions are made and they continue to increase at the current rate, global temperatures may increase by 1-2 degrees Celsius [2-4 degrees Fahrenheit]. But if the growth rate of carbon dioxide does not exceed its current rate and if the growth of true air pollutants (substances that are harmful to human health) is reversed, temperatures may rise by only 0.75 degrees Celsius [1.4 degrees Fahrenheit].



"Some continued global warming will occur, probably about 0.5 degrees Celsius [0.9 degrees Fahrenheit] even if the greenhouse gases in the air do not increase further, but the warming could be much less than the worst case scenarios," says James E. Hansen, lead researcher on the study at NASA’s Goddard Institute for Space Studies (GISS), in New York, New York. The research was a collaborative effort among 19 institutions, including seven universities, federal agencies, private industry and other NASA centers, and was funded by NASA. The results appear this month in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

The GISS SI2000 climate model provided a convincing demonstration that global temperature change of the past half-century was mainly a response to climate forcing agents, or imposed perturbations of the Earth’s energy balance, according to the researchers. This was especially true of human-made forcings, such as carbon dioxide and methane, which trap the Earth’s heat radiation as a blanket traps body heat; thus causing warming.


The computer model’s ability to simulate the past 50 years of global temperature change provided confidence in understanding the causes behind the climate changes that occurred over that time period. The sensitivity of the SI2000 model to a climate forcing is comparable to that of other climate computer models. Model results from 1951-2000 are in close agreement with observed changes: the surface has warmed by about 0.5 degrees Celsius [0.9 degrees Fahrenheit], while the upper atmosphere (15-25 kilometer [10-15 mile] altitudes) has cooled by about one degree Celsius [two degrees Fahrenheit].

The climate model then simulated global temperature change during the next 50 years, under two contrasting assumptions for future growth of human forcings. The first assumption for the emissions of greenhouse gases was the "business-as-usual" scenario, in which greenhouse gases continue to increase rapidly. This scenario leads to an accelerating rate of global warming, raising global temperature to levels that have not existed during the past several hundred thousand years.

In the "alternative" scenario, in which air pollution is decreased and fossil fuel carbon dioxide emissions are stabilized, further global warming is limited to 0.75 degrees Celsius [1.4 degrees Fahrenheit] over the next 50 years. Hansen cautioned that the "alternative" scenario would not be easy to achieve. It requires that the world begin to reverse the growth of true air pollution (especially "soot" and the gases that control surface ozone, including methane) and also that we flatten out and eventually begin to decrease carbon dioxide emissions.

The climate forcing agents that Hansen and his co-authors included in their climate simulations were: (1) long-lived greenhouse gases such as carbon dioxide, methane, and the chlorofluorocarbons; (2) stratospheric aerosols (fine particles) from volcanic eruptions; (3) variations in the Sun’s energy, indicated by sunspots; (4) ozone changes, both at the surface (a pollutant) and upper atmosphere (protection from the Sun’s ultraviolet rays); (5) stratospheric water vapor, and (6) lower atmosphere air pollution aerosols, including black and organic carbon (soot) and sulfates.

Achievement of stable carbon dioxide emissions, as required in the alternative scenario that yields minimal climate change, is likely to require some combination of increased energy efficiency, a growing role for renewable energies, capture and sequestration of carbon dioxide emissions, and/or increased use of nuclear power, says Hansen.

"Decision-makers, including the public, may need to consider all of these options as climate change becomes more apparent and as our understanding of the climate forcing agents improves," Hansen said. "Halting and reversing the growth of air pollution is possible with existing and developing technologies. It would have other benefits, especially for human health and agricultural productivity."

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>