Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 years of climate change -- and possible futures

20.09.2002


A new study using a computer climate model to simulate the last 50 years of climate changes, projects warming over the next 50 years regardless of whether or not nations curb their greenhouse gas emissions soon. If no emission reductions are made and they continue to increase at the current rate, global temperatures may increase by 1-2 degrees Celsius [2-4 degrees Fahrenheit]. But if the growth rate of carbon dioxide does not exceed its current rate and if the growth of true air pollutants (substances that are harmful to human health) is reversed, temperatures may rise by only 0.75 degrees Celsius [1.4 degrees Fahrenheit].



"Some continued global warming will occur, probably about 0.5 degrees Celsius [0.9 degrees Fahrenheit] even if the greenhouse gases in the air do not increase further, but the warming could be much less than the worst case scenarios," says James E. Hansen, lead researcher on the study at NASA’s Goddard Institute for Space Studies (GISS), in New York, New York. The research was a collaborative effort among 19 institutions, including seven universities, federal agencies, private industry and other NASA centers, and was funded by NASA. The results appear this month in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

The GISS SI2000 climate model provided a convincing demonstration that global temperature change of the past half-century was mainly a response to climate forcing agents, or imposed perturbations of the Earth’s energy balance, according to the researchers. This was especially true of human-made forcings, such as carbon dioxide and methane, which trap the Earth’s heat radiation as a blanket traps body heat; thus causing warming.


The computer model’s ability to simulate the past 50 years of global temperature change provided confidence in understanding the causes behind the climate changes that occurred over that time period. The sensitivity of the SI2000 model to a climate forcing is comparable to that of other climate computer models. Model results from 1951-2000 are in close agreement with observed changes: the surface has warmed by about 0.5 degrees Celsius [0.9 degrees Fahrenheit], while the upper atmosphere (15-25 kilometer [10-15 mile] altitudes) has cooled by about one degree Celsius [two degrees Fahrenheit].

The climate model then simulated global temperature change during the next 50 years, under two contrasting assumptions for future growth of human forcings. The first assumption for the emissions of greenhouse gases was the "business-as-usual" scenario, in which greenhouse gases continue to increase rapidly. This scenario leads to an accelerating rate of global warming, raising global temperature to levels that have not existed during the past several hundred thousand years.

In the "alternative" scenario, in which air pollution is decreased and fossil fuel carbon dioxide emissions are stabilized, further global warming is limited to 0.75 degrees Celsius [1.4 degrees Fahrenheit] over the next 50 years. Hansen cautioned that the "alternative" scenario would not be easy to achieve. It requires that the world begin to reverse the growth of true air pollution (especially "soot" and the gases that control surface ozone, including methane) and also that we flatten out and eventually begin to decrease carbon dioxide emissions.

The climate forcing agents that Hansen and his co-authors included in their climate simulations were: (1) long-lived greenhouse gases such as carbon dioxide, methane, and the chlorofluorocarbons; (2) stratospheric aerosols (fine particles) from volcanic eruptions; (3) variations in the Sun’s energy, indicated by sunspots; (4) ozone changes, both at the surface (a pollutant) and upper atmosphere (protection from the Sun’s ultraviolet rays); (5) stratospheric water vapor, and (6) lower atmosphere air pollution aerosols, including black and organic carbon (soot) and sulfates.

Achievement of stable carbon dioxide emissions, as required in the alternative scenario that yields minimal climate change, is likely to require some combination of increased energy efficiency, a growing role for renewable energies, capture and sequestration of carbon dioxide emissions, and/or increased use of nuclear power, says Hansen.

"Decision-makers, including the public, may need to consider all of these options as climate change becomes more apparent and as our understanding of the climate forcing agents improves," Hansen said. "Halting and reversing the growth of air pollution is possible with existing and developing technologies. It would have other benefits, especially for human health and agricultural productivity."

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>