Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake Study by Scripps Scientists Produces New Depiction of Fault Zones

13.09.2002


Analysis uncovers unusual earthquake-related deformation, paves the way for methods to identify new active faults


A geographic depiction of the Eastern California Shear Zone. The inset, displaying data from synthetic aperture radar interferometry (InSAR), shows the deformation induced by the 1999 Hector Mine earthquake on nearby faults.
© Scripps



On Oct. 16, 1999, approximately 37 miles from Palm Springs, Calif., a magnitude 7.1 earthquake ripped through 28 miles of faults in the Mojave Desert. Because of the area’s sparse population and development, the massive quake caused virtually no major measurable injuries or destruction.

Yet the “Hector Mine” event, named after a long-abandoned mine in the area, has produced a treasure of information about earthquakes, faults, and ruptures for scientists at Scripps Institution of Oceanography at the University of California, San Diego. ANIMATION


In results published in the Sept. 13 issue of Science, the scientists, along with a colleague at the California Institute of Technology (Caltech), reveal that they used satellite and radar technologies to uncover never-before documented characteristics of faults. These include the first evidence that faults move backwards, contrary to conventional observations, and indications that the material within faults is significantly different than its surroundings.

Scripps’s Yuri Fialko, the lead author of the study, says the implications of the study include providing a new way to identify potentially active faults, helping to track when the last earthquake occurred in a fault zone, and perhaps better understanding the earthquake process.

Fialko calls the Hector Mine event the “perfect” earthquake for the satellite and radar technologies that he and his colleagues used.

It is the first event comprehensively imaged using interferometric synthetic aperture radar (InSAR), as Fialko and coauthors demonstrated in an earlier study published in Geophysical Research Letters. InSAR uses a series of satellite recordings to detect changes in Earth’s surface.

According to Science study coauthor David Sandwell, the fresh data gave researchers an uncommon and immediate window into earthquake processes in fault areas that are only typically imaged after being altered by natural forces such as rainstorms and unnatural forces such as off-road vehicle disruption.

Fialko, Sandwell, and coauthors Duncan Agnew, Peter Shearer, and Bernard Minster of Scripps, and Mark Simons of Caltech, studied the information to find unusual signatures of fault displacements caused by Hector Mine in the Eastern California Shear Zone (ECSZ) in an area thought to be relatively inactive.

The most surprising finding was the first evidence that faults can move backwards. Prior to an earthquake, faults are locked in position by the “glue” of friction. Changes due to energy released during earthquakes cause faults to move.

“Even small stress perturbations from distant earthquakes can cause faults to move a little bit, but it’s only been known to cause this motion in a forward sense,” said Fialko. “Here we observed the faults coming backwards due to relatively small stress changes, which is really quite unusual.”

The study argues that the backward motion on the faults is caused by the dissimilar material within the faults, rather than the frictional failure.

“We used an analysis model that effectively says that material within the faults is mechanically distinct from the material surrounding the faults,” said Fialko, of the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps. “The rocks within the faults appear to be softer.”

He says the fault zones become strained during periods of stress, acting like a soft, sponge-like material. The soft area thus becomes squeezed during periods of energy release.

According to Fialko, the results will guide new seismic studies to areas with contrasting fault material, such as that seen in the Eastern California Shear Zone. They can then be used as a way of identifying potentially active faults.

Another possibility emerges through studying the properties of fault zones over time.

“Measurements of changes in the mechanical properties of faults may yield valuable information about the earthquake cycle. For example, we might be able to say how long it was before the fault experienced an earthquake and how long it takes to heal,” said Fialko.

Coauthor Shearer attributes these detailed results to the “breakthrough” offered by InSAR technology.

“Prior to InSAR, all we had were spot measurements of the deformation field,” said Shearer. “At best we had maybe a few hundred points across southern California. You had a point here and there so you didn’t really know what was happening. With InSAR we have millions of points and thus a continuous picture of deformation across southern California.”

The scientists say the findings became possible due to highly successful satellite missions of the European Space Agency.

“We hope that NASA will launch the U.S. InSAR satellites to monitor surface changes in California and elsewhere,” Fialko said. “This will dramatically improve our ability to study earthquakes as well as other potentially hazardous phenomena, such as volcanic activity and man-made deformation.”

The research was supported by the Southern California Earthquake Center and the National Science Foundation (NSF). Synthetic aperture radar data were purchased with funding from NASA, the U.S. Geological Survey, and NSF.

Mario Aguilera | alfa
Further information:
http://scrippsnews.ucsd.edu/pressreleases/fialko_science_faults.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>