Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frigid South Pole atmosphere reveals flaw in global circulation models

29.08.2002


Atmospheric measurements made at Earth’s geographic poles provide a convenient way of validating and calibrating global circulation models. Such measurements also might provide some of the first conclusive evidence of global change in the middle and upper atmospheres. But new data shows that the current models are wrong: Temperatures over the South Pole are much colder in winter than scientists had anticipated.



As reported in the Aug. 28 issue of Geophysical Research Letters, scientists have found that temperatures during mid-winter in the stratopause and mesopause regions at the South Pole are about 40-50 degrees Fahrenheit colder than model predictions.

The work was performed by Chester Gardner, a professor of electrical and computer engineering at the University of Illinois at Urbana-Champaign; Weilin Pan, a doctoral student at Illinois; and Ray Roble, a senior scientist at the High Altitude Observatory of the National Center for Atmospheric Research in Boulder, Colo.


"Our results suggest that wintertime warming due to sinking air masses is not as strong as the models have assumed," Gardner said. "But, in all fairness, since no one had made these measurements before, modelers have been forced to estimate the values. And, in this case, their estimates were wrong."

Gardner’s group was the first to make upper atmosphere temperature measurements over the South Pole. From December 1999 until October 2001, the scientists operated a laser radar (lidar) system at the Amundsen-Scott South Pole Station. By combining the lidar data with balloon measurements of the troposphere and lower stratosphere, the scientists recorded temperatures from the surface to an altitude of about 70 miles.

"After the autumnal equinox in March, radiative processes begin cooling the polar atmosphere," Gardner said. "During the long polar night, the atmosphere above Antarctica receives little sunlight and is sealed off by a vortex of winds that spins counterclockwise. This stable polar vortex prevents the transport of warmer air from lower latitudes into the pole, and leads to extreme cooling of the lower stratosphere."

In May, June and July, the stratopause region near 30 miles altitude was considerably colder than model predictions, Gardner said. "The greatest difference occurred in July, when the measured stratopause temperature was about 0 degrees Fahrenheit, compared to about 40 degrees Fahrenheit predicted by the models."

With no sunlight to warm the polar atmosphere, the only source of heat in the wintertime is the adiabatic compression of down welling air masses. This heating effect partially offsets the effects of radiative cooling of greenhouse gases -- particularly carbon dioxide -- in the middle and upper atmospheres.

"Current global circulation models apparently overpredict the amount of down-welling, because they show warmer temperatures than we observed," Gardner said.

To test this hypothesis, the researchers reduced the amount of down-welling over the polar cap using the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model. Developed by Roble and his colleagues, it is the latest in a series of sophisticated three-dimensional, time-dependent models that simulate the circulation, temperature, and compositional structure of the upper atmosphere and ionosphere.

"With the reduced down-welling, the predicted mesopause temperature near 60 miles altitude decreased from about minus 120 degrees Fahrenheit to about minus 140 degrees Fahrenheit, in better agreement with our measurements for mid-winter conditions," Gardner said. "In the stratopause region, the predicted temperature decreased from about 35 degrees Fahrenheit to about 12 degrees Fahrenheit, also in better agreement with our measurements."

The recent measurements establish a baseline for polar temperatures, which can then be compared against future changes as greenhouse gases continue to accumulate, Gardner said. "The measurements also show that we have a flaw in some of our global atmospheric circulation models. Now we can go back and improve those models to better predict the temperatures in the middle and upper atmospheres throughout both hemispheres."


The National Science Foundation funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>