Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hypothesis Of The Tunguska Explosion

23.08.2002


The event which occurred almost a hundred years ago in Podkamennaya Tunguska has drawn scientists` attention again. What actually exploded at that time in the remote taiga, the power of explosion being equal to the 50-megaton H-bomb? The hypothesis that it was a meteorite or any other extraterrestrial object has not quite satisfied inquisitive minds, since too many puzzles remain unsolved. A geologist Vladimir Epifanov, Siberian Research Institute of Geology, Geophysics and Mineral, reported to the recent Conference "Degasification of the Earthe" (Moscow) that the reason for the explosion could have been a powerful fluid jet suddenly shot up from the depth of the planet.

Extensive carbohydrates accumulations exist in the area where the alleged `Tunguska meteorite` fell down. Two abyssal breaks in this area split the sedimentary rock containing the gas-and-oil fields and gas-condensate fields sealed up by basalts on top, the basalts streamed from multiple fissures and volcanoes 200 million years ago. The epicentre of the explosion is located just above one of the ancient craters. The scientist assumes that the gases associated with the oil deposits, and methane produced in the depths of coal beds were accumulated under a thick cover of basalts and then they broke free one day. It seems that a moderate earthquake could have promoted the process.

The gas kick started nine days prior to the major explosion, a narrow jet of gases rushed up southbound. The fluid jet from under the earth was accompanied by dust, and the wind carried the dust to the west. In the upper layers of atmosphere a layer of aerosols was formed. This layer charged with electricity could have produced the fatal `sparkle`. It put on fire the top of the liquid jet, and the fire ball rushed towards the Earth. In the oxygen saturated layer of atmosphere the fire ball exploded, the blast wave stirred up the ground, and the gas discharge ceased.



The conflagration was in full swing in the area of explosion, however the trees in the epicentre remained alive. An ice dome was probably formed around the place where from the gas discharged, similar to that as it gets formed in a refrigerator when the gas goes through a narrow opening and then gets into a large chamber. It is interesting to note that the local carbohydrates are rich in helium, which could have ensured the H-bomb effect.

Vladimir Epifanov is perplexed by some circumstances of the Tunguska catastrophe, the extraterrestrial hypothesis being unable to account for them. For instance, not all the trees in the epicentre got burned. Judging by the strength of the blast wave, radiation burn, pine-tree mutations and other parameters, the event resembles the H-bomb explosion, except for high radiation. The motion path of the exploded body is such that it could hardly be a spaceship or a meteorite, the substance of which has never been found in the soil. All these facts have made the scientist think about an earthly nature of the explosion, particularly because such conjectures were made more than once by researchers in different years. Thus, in the middle of the 80s A.A. Rastegin, geologist from Novosibirsk, pointed out that the epicentre of the explosion was indeed located above a major gas accumulation.

Tatiana Pitchugina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-08-23-02_190_e.htm

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>