Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hypothesis Of The Tunguska Explosion

23.08.2002


The event which occurred almost a hundred years ago in Podkamennaya Tunguska has drawn scientists` attention again. What actually exploded at that time in the remote taiga, the power of explosion being equal to the 50-megaton H-bomb? The hypothesis that it was a meteorite or any other extraterrestrial object has not quite satisfied inquisitive minds, since too many puzzles remain unsolved. A geologist Vladimir Epifanov, Siberian Research Institute of Geology, Geophysics and Mineral, reported to the recent Conference "Degasification of the Earthe" (Moscow) that the reason for the explosion could have been a powerful fluid jet suddenly shot up from the depth of the planet.

Extensive carbohydrates accumulations exist in the area where the alleged `Tunguska meteorite` fell down. Two abyssal breaks in this area split the sedimentary rock containing the gas-and-oil fields and gas-condensate fields sealed up by basalts on top, the basalts streamed from multiple fissures and volcanoes 200 million years ago. The epicentre of the explosion is located just above one of the ancient craters. The scientist assumes that the gases associated with the oil deposits, and methane produced in the depths of coal beds were accumulated under a thick cover of basalts and then they broke free one day. It seems that a moderate earthquake could have promoted the process.

The gas kick started nine days prior to the major explosion, a narrow jet of gases rushed up southbound. The fluid jet from under the earth was accompanied by dust, and the wind carried the dust to the west. In the upper layers of atmosphere a layer of aerosols was formed. This layer charged with electricity could have produced the fatal `sparkle`. It put on fire the top of the liquid jet, and the fire ball rushed towards the Earth. In the oxygen saturated layer of atmosphere the fire ball exploded, the blast wave stirred up the ground, and the gas discharge ceased.



The conflagration was in full swing in the area of explosion, however the trees in the epicentre remained alive. An ice dome was probably formed around the place where from the gas discharged, similar to that as it gets formed in a refrigerator when the gas goes through a narrow opening and then gets into a large chamber. It is interesting to note that the local carbohydrates are rich in helium, which could have ensured the H-bomb effect.

Vladimir Epifanov is perplexed by some circumstances of the Tunguska catastrophe, the extraterrestrial hypothesis being unable to account for them. For instance, not all the trees in the epicentre got burned. Judging by the strength of the blast wave, radiation burn, pine-tree mutations and other parameters, the event resembles the H-bomb explosion, except for high radiation. The motion path of the exploded body is such that it could hardly be a spaceship or a meteorite, the substance of which has never been found in the soil. All these facts have made the scientist think about an earthly nature of the explosion, particularly because such conjectures were made more than once by researchers in different years. Thus, in the middle of the 80s A.A. Rastegin, geologist from Novosibirsk, pointed out that the epicentre of the explosion was indeed located above a major gas accumulation.

Tatiana Pitchugina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-08-23-02_190_e.htm

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>