Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hypothesis Of The Tunguska Explosion

23.08.2002


The event which occurred almost a hundred years ago in Podkamennaya Tunguska has drawn scientists` attention again. What actually exploded at that time in the remote taiga, the power of explosion being equal to the 50-megaton H-bomb? The hypothesis that it was a meteorite or any other extraterrestrial object has not quite satisfied inquisitive minds, since too many puzzles remain unsolved. A geologist Vladimir Epifanov, Siberian Research Institute of Geology, Geophysics and Mineral, reported to the recent Conference "Degasification of the Earthe" (Moscow) that the reason for the explosion could have been a powerful fluid jet suddenly shot up from the depth of the planet.

Extensive carbohydrates accumulations exist in the area where the alleged `Tunguska meteorite` fell down. Two abyssal breaks in this area split the sedimentary rock containing the gas-and-oil fields and gas-condensate fields sealed up by basalts on top, the basalts streamed from multiple fissures and volcanoes 200 million years ago. The epicentre of the explosion is located just above one of the ancient craters. The scientist assumes that the gases associated with the oil deposits, and methane produced in the depths of coal beds were accumulated under a thick cover of basalts and then they broke free one day. It seems that a moderate earthquake could have promoted the process.

The gas kick started nine days prior to the major explosion, a narrow jet of gases rushed up southbound. The fluid jet from under the earth was accompanied by dust, and the wind carried the dust to the west. In the upper layers of atmosphere a layer of aerosols was formed. This layer charged with electricity could have produced the fatal `sparkle`. It put on fire the top of the liquid jet, and the fire ball rushed towards the Earth. In the oxygen saturated layer of atmosphere the fire ball exploded, the blast wave stirred up the ground, and the gas discharge ceased.



The conflagration was in full swing in the area of explosion, however the trees in the epicentre remained alive. An ice dome was probably formed around the place where from the gas discharged, similar to that as it gets formed in a refrigerator when the gas goes through a narrow opening and then gets into a large chamber. It is interesting to note that the local carbohydrates are rich in helium, which could have ensured the H-bomb effect.

Vladimir Epifanov is perplexed by some circumstances of the Tunguska catastrophe, the extraterrestrial hypothesis being unable to account for them. For instance, not all the trees in the epicentre got burned. Judging by the strength of the blast wave, radiation burn, pine-tree mutations and other parameters, the event resembles the H-bomb explosion, except for high radiation. The motion path of the exploded body is such that it could hardly be a spaceship or a meteorite, the substance of which has never been found in the soil. All these facts have made the scientist think about an earthly nature of the explosion, particularly because such conjectures were made more than once by researchers in different years. Thus, in the middle of the 80s A.A. Rastegin, geologist from Novosibirsk, pointed out that the epicentre of the explosion was indeed located above a major gas accumulation.

Tatiana Pitchugina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-08-23-02_190_e.htm

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>