Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in the winds could have been the cause of an abrupt glacial climatic change

21.07.2008
Spanish and German researchers have carried out a collaborative study that shows how during the last glacial period, small variations in the surface winds could have induced significant changes in the oceanic currents of the North Atlantic, and could even have played a role in the abrupt climate change that occurred at the time.

Scientists from the Complutense University of Madrid (UCM) and the Potsdam-Institute for Climate Impact Research in Germany have carried out a study which identifies small alterations in the superficial sea winds as the factors with a key role in the abrupt climatic change that occurred over the last glacial period whose origin is not yet fully understood. The research has been published in the prestigious journal Geophysical Research Letters receiving a special mention from the American Geophysical Union.

This study, carried out by researchers Marisa Montoya and Anders Levermann, concluded that there is a precise point from which a small variation in the speed of sea winds corresponds to a dramatic change in the Atlantic circulation intensity. According to Marisa Montoya, “If the glacial climate had been in the vicinity of that point, small wind changes could have caused sudden and significant climatic changes during that period”

The study was based on climatic simulations called Last Glacial Maximum (LGM) (the period of maximum extension of the perpetual ice sheets that took place over 21.000 years ago). These simulations have demonstrated the existence of a threshold after which a small change in wind speed causes disproportionately large changes in the sea current speed. The results indicate that these changes in wind speed could have had a particularly important role in the abrupt climatic change of the last ice age.

Climate simulation of the Last Glacial Maximum is one of the principal challenges for experts in this area. The comparison of results from these simulations with climatic reconstructions based on data gathered from natural elements, such as sea sediments or the oldest ice samples; permit the evaluation of the climatic models in conditions independent from the ones used for their design. The results confirm the relevance of the small variations and help further substantiate the hypothesis about the physical mechanisms responsible for the climatic changes observed in the reconstructions.

Both, the climatic simulations as well as the reconstructions, indicate that variations in the Atlantic Ocean circulation could have been the key mechanism responsible for the abrupt climatic change that took place over the ice age. This circulation plays a fundamental role in the regulation of climate on a global scale, since it transports large quantities of relatively warm water from low latitudes to northern regions, softening the climate of countries like Norway or Ireland in comparison with other regions in the same latitude, but with much harsher climates, like Alaska or New York. This study therefore suggests that the changes in oceanic circulation could have been caused by changes in the speed of surface winds.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org
http://www.agu.org/journals/gl/

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>