Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in the winds could have been the cause of an abrupt glacial climatic change

21.07.2008
Spanish and German researchers have carried out a collaborative study that shows how during the last glacial period, small variations in the surface winds could have induced significant changes in the oceanic currents of the North Atlantic, and could even have played a role in the abrupt climate change that occurred at the time.

Scientists from the Complutense University of Madrid (UCM) and the Potsdam-Institute for Climate Impact Research in Germany have carried out a study which identifies small alterations in the superficial sea winds as the factors with a key role in the abrupt climatic change that occurred over the last glacial period whose origin is not yet fully understood. The research has been published in the prestigious journal Geophysical Research Letters receiving a special mention from the American Geophysical Union.

This study, carried out by researchers Marisa Montoya and Anders Levermann, concluded that there is a precise point from which a small variation in the speed of sea winds corresponds to a dramatic change in the Atlantic circulation intensity. According to Marisa Montoya, “If the glacial climate had been in the vicinity of that point, small wind changes could have caused sudden and significant climatic changes during that period”

The study was based on climatic simulations called Last Glacial Maximum (LGM) (the period of maximum extension of the perpetual ice sheets that took place over 21.000 years ago). These simulations have demonstrated the existence of a threshold after which a small change in wind speed causes disproportionately large changes in the sea current speed. The results indicate that these changes in wind speed could have had a particularly important role in the abrupt climatic change of the last ice age.

Climate simulation of the Last Glacial Maximum is one of the principal challenges for experts in this area. The comparison of results from these simulations with climatic reconstructions based on data gathered from natural elements, such as sea sediments or the oldest ice samples; permit the evaluation of the climatic models in conditions independent from the ones used for their design. The results confirm the relevance of the small variations and help further substantiate the hypothesis about the physical mechanisms responsible for the climatic changes observed in the reconstructions.

Both, the climatic simulations as well as the reconstructions, indicate that variations in the Atlantic Ocean circulation could have been the key mechanism responsible for the abrupt climatic change that took place over the ice age. This circulation plays a fundamental role in the regulation of climate on a global scale, since it transports large quantities of relatively warm water from low latitudes to northern regions, softening the climate of countries like Norway or Ireland in comparison with other regions in the same latitude, but with much harsher climates, like Alaska or New York. This study therefore suggests that the changes in oceanic circulation could have been caused by changes in the speed of surface winds.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org
http://www.agu.org/journals/gl/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>