Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in the winds could have been the cause of an abrupt glacial climatic change

21.07.2008
Spanish and German researchers have carried out a collaborative study that shows how during the last glacial period, small variations in the surface winds could have induced significant changes in the oceanic currents of the North Atlantic, and could even have played a role in the abrupt climate change that occurred at the time.

Scientists from the Complutense University of Madrid (UCM) and the Potsdam-Institute for Climate Impact Research in Germany have carried out a study which identifies small alterations in the superficial sea winds as the factors with a key role in the abrupt climatic change that occurred over the last glacial period whose origin is not yet fully understood. The research has been published in the prestigious journal Geophysical Research Letters receiving a special mention from the American Geophysical Union.

This study, carried out by researchers Marisa Montoya and Anders Levermann, concluded that there is a precise point from which a small variation in the speed of sea winds corresponds to a dramatic change in the Atlantic circulation intensity. According to Marisa Montoya, “If the glacial climate had been in the vicinity of that point, small wind changes could have caused sudden and significant climatic changes during that period”

The study was based on climatic simulations called Last Glacial Maximum (LGM) (the period of maximum extension of the perpetual ice sheets that took place over 21.000 years ago). These simulations have demonstrated the existence of a threshold after which a small change in wind speed causes disproportionately large changes in the sea current speed. The results indicate that these changes in wind speed could have had a particularly important role in the abrupt climatic change of the last ice age.

Climate simulation of the Last Glacial Maximum is one of the principal challenges for experts in this area. The comparison of results from these simulations with climatic reconstructions based on data gathered from natural elements, such as sea sediments or the oldest ice samples; permit the evaluation of the climatic models in conditions independent from the ones used for their design. The results confirm the relevance of the small variations and help further substantiate the hypothesis about the physical mechanisms responsible for the climatic changes observed in the reconstructions.

Both, the climatic simulations as well as the reconstructions, indicate that variations in the Atlantic Ocean circulation could have been the key mechanism responsible for the abrupt climatic change that took place over the ice age. This circulation plays a fundamental role in the regulation of climate on a global scale, since it transports large quantities of relatively warm water from low latitudes to northern regions, softening the climate of countries like Norway or Ireland in comparison with other regions in the same latitude, but with much harsher climates, like Alaska or New York. This study therefore suggests that the changes in oceanic circulation could have been caused by changes in the speed of surface winds.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org
http://www.agu.org/journals/gl/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>