Soot From Ships Worse Than Expected

In the Arctic, an increase in soot may contribute to climate change if shipping routes expand, according to the study.

Oceangoing tankers and container ships emit half a gram of soot per kilogram of fuel burned when at dock and slightly less when traveling, according to scientists from the National Oceanic and Atmospheric Administration (NOAA) and the University of Colorado (CU) who conducted the new study. Tugs emit nearly a gram of soot per kilogram of fuel burned–twice as much as any other vessel type, the authors find.

“Tugboats are a huge source of black carbon that may be under- reported or not reported at all in emissions inventories compiled by ports,” says the study lead author Daniel Lack of NOAA's Earth System Research Laboratory (ESRL) and the NOAA-CU Cooperative Institute for Research in Environmental Sciences.

He and his colleagues will present their findings on 11 July 2008 in Geophysical Research Letters, a journal of the American Geophysical Union, or AGU.

Commercial shipping releases roughly 130,000 metric tons of soot per year, or 1.7 percent of the global total–much of it near highly populated coastlines, the authors estimate. In the coming years global shipping is expected to grow two to six percent annually.

Exceptionally high soot levels from tugboats point to their low- quality fuel–a thick, black tar left over from crude oil after the gasoline and kerosene have been removed. Engine age and maintenance also play a role. Tugboats have a disproportionate impact on air quality because they travel within ports, emitting potentially harmful particles near populous urban areas, according to the authors.

To investigate ship emissions, the researchers observed plumes from commercial vessels in open ocean waters, channels, and ports along the southeastern United States and Texas during the summer of 2006. From the NOAA research vessel, Ronald H. Brown, the team measured black carbon emitted by tankers, cargo and container ships, large fishing boats, tug boats, and ferries, many of them in the Houston Ship Channel.

“Commercial shipping emissions have been one of the least studied areas of all combustion emissions,” says Lack. “The two previous studies of soot emissions examined a total of three ships. We reviewed plumes from 96 different vessels.”

A 2007 study by American and German scientists linked particle pollution from shipping to tens of thousands of premature deaths each year, most of them along coastlines in Europe, East Asia, and South Asia. Soot makes up a quarter of that pollution, says Lack.

The primary sources of soot, or small particles of black carbon, are fossil fuel combustion, wildfires, and burning vegetation for agricultural purposes. On a global scale, soot currently traps about 30 percent as much heat as does carbon dioxide, the most important greenhouse gas, according to the latest assessment of the Intergovernmental Panel on Climate Change.

Small dark soot particles absorb sunlight, create haze, and affect how clouds form and make rain, further altering a region's heat balance, according to the new study. If commercial shipping extends new routes through Arctic waters as they become navigable, soot emissions there could increase.

The NOAA program for climate change funded this study.

Media Contact

Peter Weiss American Geophysical Union

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors