Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected carbon composition discovered in world's oldest diamonds

03.07.2008
Did life on earth begin earlier than we have hitherto believed?

While examining the oldest diamonds in the world, a group of researchers, including Martina Menneken and Dr. Thorsten Geisler from the University of Münster (Institute of Mineralogy), have found evidence that life may have existed 4.25 billion years ago.

Up to now, scientists have assumed that the first living cells came into being around 3.5 billion years ago. The prestigious magazine "Nature" has published the results in its current edition dated July 3rd, 2008.

Martina Menneken and her colleagues had already made news in 2007 when they discovered the oldest diamonds in the world. Since then a team consisting of scientists from Australia, Sweden and Münster have been continuing their analysis of the diamond and graphite inclusions in zircons from western Australia which are only a few micrometres in size and up to 4.25 billion years old. In the course of their work the researchers have found some unexpectedly low content of the heavy carbon isotope C-13. Small amounts of this isotope are typical of carbon originating from organic material.

With the aid of a secondary ion mass spectrometer the scientists have measured the proportions of various carbon isotopes (C-12 to C-13) in the inclusions in order to get more information about where the carbon came from and how the diamond and graphite inclusions arose. The proportions measured range from typical values found in the earth's crust to values characterized by an extremely low amount of the heavy C-13 isotope.

"The composition of the carbon isotopes is an indication that life may have existed 4.25 billion years ago," says Martina Menneken. However, abiogenic chemical reactions may also have caused low amounts of heavy carbon. What is certain is that very soon after the formation of the earth 4.56 billion years ago there must have existed on earth a carbon reservoir with extremely low amounts of C-13.

"Our data do not prove the existence of life 4.25 billion years ago," says Menneken, "but they do raise the question of how this unexpected carbon composition arose." The presence of living organisms is one possible explanation. If it should turn out to be true, the history of life would have to be rewritten.

Reference: Nemchin et al. (2008): A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454, 92-95

Weitere Informationen:
http://www.uni-muenster.de/Mineralogie/en/index.html Institute of Mineralogy / WWU

http://www.nature.com/nature/journal/v454/n7200/full/nature07102.html Nature-article

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.uni-muenster.de/Mineralogie/en/index.html
http://www.nature.com/nature/journal/v454/n7200/full/nature07102.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>