Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected carbon composition discovered in world's oldest diamonds

03.07.2008
Did life on earth begin earlier than we have hitherto believed?

While examining the oldest diamonds in the world, a group of researchers, including Martina Menneken and Dr. Thorsten Geisler from the University of Münster (Institute of Mineralogy), have found evidence that life may have existed 4.25 billion years ago.

Up to now, scientists have assumed that the first living cells came into being around 3.5 billion years ago. The prestigious magazine "Nature" has published the results in its current edition dated July 3rd, 2008.

Martina Menneken and her colleagues had already made news in 2007 when they discovered the oldest diamonds in the world. Since then a team consisting of scientists from Australia, Sweden and Münster have been continuing their analysis of the diamond and graphite inclusions in zircons from western Australia which are only a few micrometres in size and up to 4.25 billion years old. In the course of their work the researchers have found some unexpectedly low content of the heavy carbon isotope C-13. Small amounts of this isotope are typical of carbon originating from organic material.

With the aid of a secondary ion mass spectrometer the scientists have measured the proportions of various carbon isotopes (C-12 to C-13) in the inclusions in order to get more information about where the carbon came from and how the diamond and graphite inclusions arose. The proportions measured range from typical values found in the earth's crust to values characterized by an extremely low amount of the heavy C-13 isotope.

"The composition of the carbon isotopes is an indication that life may have existed 4.25 billion years ago," says Martina Menneken. However, abiogenic chemical reactions may also have caused low amounts of heavy carbon. What is certain is that very soon after the formation of the earth 4.56 billion years ago there must have existed on earth a carbon reservoir with extremely low amounts of C-13.

"Our data do not prove the existence of life 4.25 billion years ago," says Menneken, "but they do raise the question of how this unexpected carbon composition arose." The presence of living organisms is one possible explanation. If it should turn out to be true, the history of life would have to be rewritten.

Reference: Nemchin et al. (2008): A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454, 92-95

Weitere Informationen:
http://www.uni-muenster.de/Mineralogie/en/index.html Institute of Mineralogy / WWU

http://www.nature.com/nature/journal/v454/n7200/full/nature07102.html Nature-article

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.uni-muenster.de/Mineralogie/en/index.html
http://www.nature.com/nature/journal/v454/n7200/full/nature07102.html

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>