Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For hurricanes, storms, raindrop size makes all the difference

10.06.2008
When Tropical Storm Gaston hit Richmond, Va., in August 2004, its notable abundance of small and mid-sized raindrops created torrential rains that led to unexpected flash flooding throughout the city and its suburbs.

New research from NASA has concluded that tropical cyclones like Gaston produce rain differently than another class of storms called "extra-tropical" cyclones. According to the study, making a proper distinction between these systems by looking at both raindrop size and abundance may be a key to assisting weather forecasters in estimating rainfall intensity. By doing so, forecasters can reduce the surprise factor of flash flooding and the unfortunate loss of property and life.

Ali Tokay, a research scientist from the Joint Center for Earth Systems Technology (JCET) at the University of Maryland Baltimore County, Baltimore, and NASA's Goddard Space Flight Center, Greenbelt, Md., compared the rain measurements collected in tropical storms and hurricanes during the past three Atlantic hurricane seasons with measurements after these storms transitioned to being extra-tropical. Tokay's study appeared in the May issue of the American Meteorological Society's Monthly Weather Review.

When a tropical cyclone -- the generic name for tropical depressions, tropical storms and hurricanes -- merges with a mid-latitude frontal storm system, measurable changes to the raindrop size and abundance occur as the system transitions to become extra-tropical. Extra-tropical cyclones also form outside the tropics without being part of a tropical system, and tend to form over land rather than over the open ocean. This category of storm can produce anything from a cloudy sky to a thunderstorm as it develops between weather fronts, the boundaries separating air masses of different densities.

Tokay looked at raindrop size, rain intensity, and the area in which rain falls in both tropical cyclones and extra-tropical cyclones using ground-based rain-measuring instruments called disdrometers. These instruments measure the range of raindrop sizes in a storm and the intensity of the rainfall. The disdrometer is an important part of the ground-based rain measuring instruments that are used to validate rainfall seen from satellites including the Tropical Rainfall Measuring Mission (TRMM), a joint mission with NASA and the Japanese Space Agency. He concluded that tropical cyclones that form over water tend to rain harder and have a greater amount of smaller drops before they transition to being extra-tropical with raindrops of larger size and mass.

"Torrents of rainfall from tropical storms are not surprising since the systems are large and move slowly. It is also true that slow moving frontal systems associated with an extra-tropical cyclone can result in abundant rainfall at a site," said Tokay. "What is less known is that the distribution of raindrops within a volume of air between the two systems differs substantially even though weather radar may measure the same returned power which is known as reflectivity." This is why disdrometer measurements of raindrop size are needed.

"Both rain intensity and reflectivity are integral products of raindrop size distribution, but they are mathematically related to different powers of the drop size," said Tokay. Weather radars cannot measure the range of raindrop sizes. As a result, rainfall estimates from weather radars must employ the use of equations that make assumptions about raindrop size. These assumptions can result in underestimation of rain intensity, and the possibility of deadly flooding.

In the study, Tokay uses disdrometer data from various sites around the U.S. and abroad. Most of the data were collected at NASA's Wallops Flight Facility, Wallops Island, Va., where Paul Bashor of Computer Sciences Corporation, Wallops Island, Va. maintains several types of disdrometers. The data from two tropical storms were collected at Orlando, Fla., and Lafayette, La. through collaborative efforts with Takis Kasparis at the University of Central Florida's Orlando campus, and Emad Habib of the University of Louisiana at Lafayette.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2008/raindrop_size.html

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>