Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data show Antarctic ice stream radiating seismically

06.06.2008
Stick, slip, like an earthquake

A seismologist at Washington University in St. Louis and colleagues at Pennsylvania State University and Newcastle University in the United Kingdom have found seismic signals from a giant river of ice in Antarctica that makes California's earthquake problem seem trivial.

Douglas A. Wiens, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, and colleagues combined seismological and global positioning system (GPS) analyses to reveal two bursts of seismic waves from an ice stream in Antarctica every day, each one equivalent to a magnitude seven earthquake. The GPS analyses were performed by Pennsylvania State and Newcastle University researchers.

The ice stream is essentially a giant glacier 60 miles wide and one-half mile thick. The data show that the river of ice moves about 18 inches within ten minutes, remains still for 12 hours, then moves another eighteen inches. Each time it moves, it gives off seismic waves that are recorded at seismographs all around Antarctica, and even as far away as Australia.

Seismic waves from what are loosely called "glacial earthquakes," mainly near Greenland, were originally reported in 2003, and the numbers have been increasing in recent years. Some scientists think the waves come from the phenomenon of calving, where a big chunk of ice breaks off of a glacier and floats away in the ocean, a very violent activity that could generate strong seismic signals. The new results show that at least some of the glacial earthquakes are produced by sudden sliding of large ice sheets.

The Antarctic signals were first detected by seismographs deployed by Wiens and his colleagues in 2001-2003 at a location about 500 miles away from the ice stream.

"At first we didn't know where the waves were coming from, but eventually we were able to narrow down the source to the ice stream." Wiens said.

Slower than a real earthquake

Prior to this discovery, researchers were not aware that ice streams radiated seismic waves.

"By some measures, the seismic impact is equivalent to a very large earthquake, but it doesn't feel like it because the movement is much slower than a real earthquake," Wiens said. "The data look an awful lot like an earthquake, but the slip lasts for 10 minutes, while on the other hand an earthquake of this size would last for just ten seconds. I guess you could call it an earthquake at glacial speed. This is very strange behavior, and we need to understand more about it."

GPS instruments placed directly on the ice stream can detect where slipping motion begins and where it stops. Scientists describe the motion as "stick-slip", which is the classic motion of earthquakes, occurring when the area around a fault moves slowly but the fault is stuck, remaining stationary until the stress builds up and the fault finally slips.

"The GPS shows us directly how the ice stream moves," Wiens said. "The slip starts in a certain part of the ice stream and then it moves out, rather like a landslide might start at a certain point and then move out to envelope an entire mountainside. The GPS tells us which part moved first and what other parts moved next and so forth."

The data show that the slip always starts from the same spot on the bed of the ice stream, what glaciologists call a "sticky" spot, which has more friction than the surrounding part of the bed.

A slip, not a creep

"Glaciologists had thought that they understood how glaciers move, and they thought they move slowly and continuously by creep, but now this indicates that they move with a fast slip, almost like an earthquake," Wiens said.

The study was published in the June 5 issue of Nature on-line and was funded by the National Science Foundation.

Wiens said that it is important to understand the physics behind what is controlling this kind of slip.

"This stick-slip phenomenon may provide a clue about what makes these ice streams move faster or slower," Wiens said. "This particular ice stream has been slowing down over the last few decades, and no one knows why. "

Wiens plans to study seismic records of stick-slip events going back several decades to see if there are changes, and also to search for similar signals from other ice streams.

"We need to understand what controls the speed of the ice streams, because that will affect how fast the ice in Antarctica will go away and sea level will rise as global warming melts the West Antarctic Ice Sheet."

Douglas A. Wiens | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>