Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists endure Arctic for last campaign prior to CryoSat-2 launch

An international group of scientists has swapped their comfortable offices for one of the most inhospitable environments on the planet to carry out a challenging field campaign that is seen as the key to ensuring the data delivered by ESA's ice mission CryoSat will be as accurate as possible.

The scientists, mainly from Denmark, UK, Germany and Canada, are currently in the middle of CryoSat Validation Experiment (CryoVEx) 2008, an extensive three-week experiment programme in the far north of Greenland and Canada.

CryoVEx 2008 is a continuation of a number of earlier campaigns that focus on collecting data on the properties snow and ice over land and sea. The data collected during the campaigns will later enable scientists to accurately interpret the variations in ice thickness with time, which will be measured by the Earth Explorer CryoSat mission.

Although CryoVEx 2008 builds on previous exercises and the scientists are fairly seasoned when it comes to enduring the harsh Arctic environment, this year's campaign is a huge logistical undertaking as airborne, helicopter and ground measurements are being taken simultaneously in three different locations - out on the floating sea-ice north of the Canadian Forces Station Alert, on the Devon ice cap in Canada and on the vast Greenland ice cap.

The campaign includes a unique experiment in northern Greenland where the 'cold' ice is assumed to be similar to large parts of Antarctica. Accessing the planned northern areas has been particularly complicated due to limited infrastructure, military permits, unforgiving weather, large distances and a host of other constraints.

Despite these constraints, the range of equipment put to the service of the campaign is impressive. They include a Twin Otter carrying on-board the two key instruments for the investigations: ASIRAS, a radar altimeter that mimics the radar altimeter on-board CryoSat-2 and a laser scanner which maps the surface beneath the plan, and a helicopter with an on-board sensor that measures sea-ice thickness.

A second Twin-Otter is being used to position UK and Canadian scientists on the Greenland Ice Sheet, Devon Ice Cap and Alert and US and Canadian military aircraft are put into action to transport fuel to the Alert station and scientists.

"One of the key experiments will be to acquire coincident airborne and helicopter measurements over sea ice", says Rene Forsberg from the Danish National Space Centre who is responsible for the airborne programme. "In two previous campaigns we have been only partially successful and we would really like to know whether this novel experimental activity is possible and can contribute to the validation of CryoSat data over sea ice."

Launching in 2009, CryoSat-2 is specifically aimed at advancing our understanding of polar ice cover and its response to climate change. CryoSat-2 will measure fluctuations in the thickness of ice both on land and floating in the sea to provide a clear picture of the influence that climate change is having on the Earth's polar ice masses.

There are many challenges associated with building, launching and successfully operating an Earth Observation satellite and amongst the list of challenges is making sure that the resulting data is as accurate and meaningful as possible, which includes an assessment of the extent to which they may be in error.

As the CryoSat signal is sensitive to variations in the properties of snow and ice, it is crucial to understand, and then correct for, changes that occur naturally so that long-term trends can be determined with the highest possible precision.

ESA has therefore gone to considerable lengths to organise the series of CryoVEx campaigns in the Arctic to simulate the measurements that CryoSat-2 will take. This includes flying an airborne version of the CryoSat-2 radar altimeter and a laser altimeter to take measurements of ice while teams on the ground take measurements as the plane passes over.

Malcolm Davidson, ESA's CryoSat-2 Validation Manager explains, "As the airborne measurements have a much higher resolution than measurements made from a satellite, scientists can use the CryoVEx campaign to make direct comparisons between ground and airborne measurements. The knowledge gained with local measurements is then extrapolated to a global scale to predict the influence of snow and ice properties on the CryoSat-2 measurements from space."

Already halfway through the campaign, a huge amount of data has already been successfully collected and scientists look forward to completing the campaign with the knowledge that their hard work will go a long way in helping the CryoSat mission reach its goal of measuring ice-thickness change with unprecedented accuracy.

Malcolm Davidson | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>