Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists endure Arctic for last campaign prior to CryoSat-2 launch

13.05.2008
An international group of scientists has swapped their comfortable offices for one of the most inhospitable environments on the planet to carry out a challenging field campaign that is seen as the key to ensuring the data delivered by ESA's ice mission CryoSat will be as accurate as possible.

The scientists, mainly from Denmark, UK, Germany and Canada, are currently in the middle of CryoSat Validation Experiment (CryoVEx) 2008, an extensive three-week experiment programme in the far north of Greenland and Canada.

CryoVEx 2008 is a continuation of a number of earlier campaigns that focus on collecting data on the properties snow and ice over land and sea. The data collected during the campaigns will later enable scientists to accurately interpret the variations in ice thickness with time, which will be measured by the Earth Explorer CryoSat mission.

Although CryoVEx 2008 builds on previous exercises and the scientists are fairly seasoned when it comes to enduring the harsh Arctic environment, this year's campaign is a huge logistical undertaking as airborne, helicopter and ground measurements are being taken simultaneously in three different locations - out on the floating sea-ice north of the Canadian Forces Station Alert, on the Devon ice cap in Canada and on the vast Greenland ice cap.

The campaign includes a unique experiment in northern Greenland where the 'cold' ice is assumed to be similar to large parts of Antarctica. Accessing the planned northern areas has been particularly complicated due to limited infrastructure, military permits, unforgiving weather, large distances and a host of other constraints.

Despite these constraints, the range of equipment put to the service of the campaign is impressive. They include a Twin Otter carrying on-board the two key instruments for the investigations: ASIRAS, a radar altimeter that mimics the radar altimeter on-board CryoSat-2 and a laser scanner which maps the surface beneath the plan, and a helicopter with an on-board sensor that measures sea-ice thickness.

A second Twin-Otter is being used to position UK and Canadian scientists on the Greenland Ice Sheet, Devon Ice Cap and Alert and US and Canadian military aircraft are put into action to transport fuel to the Alert station and scientists.

"One of the key experiments will be to acquire coincident airborne and helicopter measurements over sea ice", says Rene Forsberg from the Danish National Space Centre who is responsible for the airborne programme. "In two previous campaigns we have been only partially successful and we would really like to know whether this novel experimental activity is possible and can contribute to the validation of CryoSat data over sea ice."

Launching in 2009, CryoSat-2 is specifically aimed at advancing our understanding of polar ice cover and its response to climate change. CryoSat-2 will measure fluctuations in the thickness of ice both on land and floating in the sea to provide a clear picture of the influence that climate change is having on the Earth's polar ice masses.

There are many challenges associated with building, launching and successfully operating an Earth Observation satellite and amongst the list of challenges is making sure that the resulting data is as accurate and meaningful as possible, which includes an assessment of the extent to which they may be in error.

As the CryoSat signal is sensitive to variations in the properties of snow and ice, it is crucial to understand, and then correct for, changes that occur naturally so that long-term trends can be determined with the highest possible precision.

ESA has therefore gone to considerable lengths to organise the series of CryoVEx campaigns in the Arctic to simulate the measurements that CryoSat-2 will take. This includes flying an airborne version of the CryoSat-2 radar altimeter and a laser altimeter to take measurements of ice while teams on the ground take measurements as the plane passes over.

Malcolm Davidson, ESA's CryoSat-2 Validation Manager explains, "As the airborne measurements have a much higher resolution than measurements made from a satellite, scientists can use the CryoVEx campaign to make direct comparisons between ground and airborne measurements. The knowledge gained with local measurements is then extrapolated to a global scale to predict the influence of snow and ice properties on the CryoSat-2 measurements from space."

Already halfway through the campaign, a huge amount of data has already been successfully collected and scientists look forward to completing the campaign with the knowledge that their hard work will go a long way in helping the CryoSat mission reach its goal of measuring ice-thickness change with unprecedented accuracy.

Malcolm Davidson | alfa
Further information:
http://www.esa.int/esaEO/SEMWGM2QGFF_planet_0.html

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>