Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny tremors can track extreme storms in a warming planet

21.04.2008
Data from faint earth tremors caused by wind-driven ocean waves—often dismissed as “background noise” at seismographic stations around the world—suggest extreme ocean storms have become more frequent over the past three decades, according to research presented at the annual meeting of the Seismological Society of America.

The International Panel on Climate Change (IPCC) and other prominent researchers have predicted that stronger and more frequent storms may occur as a result of global warming trends. The tiny tremors, or microseisms, offer a new way to discover whether these predictions are already coming true, said Richard Aster, a geophysics professor at the New Mexico Institute of Mining and Technology.

Unceasing as the ocean waves that trigger them, the microseisms show up as five- to 30-second oscillations of Earth’s surface at seismographic stations around the world. Even seismic monitoring stations “in the middle of a continent are sensitive to the waves crashing all around the continent,” Aster said.

As storm winds drive ocean waves higher, the microseism signals increase their amplitude as well, offering a unique way to track storm intensities across seasons, over time, and at different geographical locations. For instance, Aster and colleagues Daniel McNamara from the U.S. Geological Survey and Peter Bromirski of the Scripps Institution of Oceanography recently published analysis in the Seismological Society of America journal Seismological Research Letters showing that microseism data collected around the Pacific Basin and throughout the world could be used to detect and quantify wave activity from multi-year events such as the El Niño and La Niña ocean disruptions.

The findings spurred them to look for a microseism signal that would reveal whether extreme storms were becoming more common in a warming world. In fact, they saw “a remarkable thing,” among the worldwide microseism data collected from 1972 to 2008, Aster recalled. In 22 of the 22 stations included in the study, the number of extreme storm events had increased over time, they found.

While the work on evaluating changes in extreme storms is “still very much in its early stages”, Aster is “hoping that the study will offer a much more global look” at the effects of climate change on extreme storms and the wind-driven waves that they produce. At the moment, most of the evidence linking the two comes from studies of hurricane intensity and shoreline erosion in specific regions such as the Pacific Northwest Gulf of Mexico, he noted.

The researchers are also working on recovering and digitizing older microseism records, potentially creating a data set that stretches back to the 1930s. Aster praised the work of the long-term observatories that have collected the records, calling them a good example of the “Cinderella science”—unloved and overlooked—that often support significant discoveries.

“It’s absolutely great data on the state of the planet. We took a prosaic time series, and found something very interesting in it,” he said.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>