Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover New Way of Estimating Size and Frequency of Meteorite Impacts

14.04.2008
Meteorite linked to mass extinction 65 million years ago was four to six kilometers in diameter

Scientists have developed a new way of determining the size and frequency of meteorites that have collided with Earth.

Their work shows that the size of the meteorite that likely plummeted to Earth at the time of the Cretaceous-Tertiary (K-T) boundary 65 million years ago was four to six kilometers in diameter. The meteorite was the trigger, scientists believe, for the mass extinction of dinosaurs and other life forms.

François Paquay, a geologist at the University of Hawaii at Manoa (UHM), used variations (isotopes) of the rare element osmium in sediments at the ocean bottom to estimate the size of these meteorites. The results are published in this week's issue of the journal Science.

When meteorites collide with Earth, they carry a different osmium isotope ratio than the levels normally seen throughout the oceans.

"The vaporization of meteorites carries a pulse of this rare element into the area where they landed," says Rodey Batiza of the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research along with NSF's Division of Earth Sciences. "The osmium mixes throughout the ocean quickly. Records of these impact-induced changes in ocean chemistry are then preserved in deep-sea sediments."

Paquay analyzed samples from two sites, Ocean Drilling Program (ODP) site 1219 (located in the Equatorial Pacific), and ODP site 1090 (located off of the tip of South Africa) and measured osmium isotope levels during the late Eocene period, a time during which large meteorite impacts are known to have occurred.

"The record in marine sediments allowed us to discover how osmium changes in the ocean during and after an impact," says Paquay.

The scientists expect that this new approach to estimating impact size will become an important complement to a more well-known method based on iridium.

Paquay, along with co-author Gregory Ravizza of UHM and collaborators Tarun Dalai from the Indian Institute of Technology and Bernhard Peucker-Ehrenbrink from the Woods Hole Oceanographic Institution, also used this method to make estimates of impact size at the K-T boundary.

Even though these method works well for the K-T impact, it would break down for an event larger than that: the meteorite contribution of osmium to the oceans would overwhelm existing levels of the element, researchers believe, making it impossible to sort out the osmium's origin.

Under the assumption that all the osmium carried by meteorites is dissolved in seawater, the geologists were able to use their method to estimate the size of the K-T meteorite as four to six kilometers in diameter.

The potential for recognizing previously unknown impacts is an important outcome of this research, the scientists say.

"We know there were two big impacts, and can now give an interpretation of how the oceans behaved during these impacts," says Paquay. "Now we can look at other impact events, both large and small."

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>