Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grand Canyon may be as old as dinosaurs

11.04.2008
Study by University of Colorado at Boulder, California Institute of Technology pushes back assumed origins by 40-50 million years

New geological evidence indicates the Grand Canyon may be so old that dinosaurs once lumbered along its rim, according to a study by researchers from the University of Colorado at Boulder and the California Institute of Technology.

The team used a technique known as radiometric dating to show the Grand Canyon may have formed more than 55 million years ago, pushing back its assumed origins by 40 million to 50 million years. The researchers gathered evidence from rocks in the canyon and on surrounding plateaus that were deposited near sea level several hundred million years ago before the region uplifted and eroded to form the canyon.

A paper on the subject will be published in the May issue of the Geological Society of America Bulletin. CU-Boulder geological sciences Assistant Professor Rebecca Flowers, lead author and a former Caltech postdoctoral researcher, collaborated with Caltech geology Professor Brian Wernicke and Caltech geochemistry Professor Kenneth Farley on the study.

"As rocks moved to the surface in the Grand Canyon region, they cooled off," said Flowers. "The cooling history of the rocks allowed us to reconstruct the ancient topography, telling us the Grand Canyon has an older prehistory than many had thought."

The team believes an ancestral Grand Canyon developed in its eastern section about 55 million years ago, later linking with other segments that had evolved separately. "It's a complicated picture because different segments of the canyon appear to have evolved at different times and subsequently were integrated," Flowers said.

The ancient sandstone in the canyon walls contains grains of a phosphate mineral known as apatite -- hosting trace amounts of the radioactive elements uranium and thorium -- which expel helium atoms as they decay, she said. An abundance of the three elements, paired with temperature information from Earth's interior, provided the team a clock of sorts to calculate when the apatite grains were embedded in rock a mile deep -- the approximate depth of the canyon today -- and when they cooled as they neared Earth's surface as a result of erosion.

Apatite samples from the bottom of the Upper Granite Gorge region of the Grand Canyon yield similar dates as samples collected on the nearby plateau, said Caltech's Wernicke. "Because both canyon and plateau samples resided at nearly the same depth beneath the Earth's surface 55 million years ago, a canyon of about the same dimensions of today may have existed at least that far back, and possibly as far back as the time of dinosaurs at the end of the Cretaceous period 65 million years ago."

One of the most surprising results from the study is the evidence showing the adjacent plateaus around the Grand Canyon may have eroded away as swiftly as the Grand Canyon itself, each dropping a mile or more, said Flowers. Small streams on the plateaus appear to have been just as effective at stripping away rock as the ancient Colorado River was at carving the massive canyon.

"If you stand on the rim of the Grand Canyon today, the bottom of the ancestral canyon would have sat over your head, incised into rocks that have since been eroded away," said Flowers. The ancestral Colorado River was likely running in the opposite direction millions of years ago, she said.

When the canyon was formed, it probably looked like a much deeper version of present-day Zion Canyon, which cuts through strata of the Mesozoic era dating from about 250 million to 65 million years ago, Wernicke said. From 28 million to 15 million years ago, a pulse of erosion deepened the already-formed canyon and also scoured surrounding plateaus, stripping off the Mesozoic strata to reveal the Paleozoic rocks visible today, he said.

The prevailing belief is that the canyon was incised by an ancient river about six million years ago as the surrounding plateau began rising from sea level to the current elevation of about 7,000 feet. The new scenario described in the GSA Bulletin by Flowers and her colleagues is consistent with recent evidence by other geologists using radiometric dating techniques indicating the Grand Canyon is significantly older than scientists had long believed.

Rebecca Flowers | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>