Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismologist's project uses public's laptops to monitor and predict earthquakes

04.04.2008
Network of computers senses earthquake and sends warning, potentially saving lives

A simple idea for monitoring earthquakes that Elizabeth Cochran, a seismologist at UC Riverside, came up with in 2006 is being realized today, and has the potential to save lives in case an earthquake strikes.

The idea involves inviting the public to help monitor earthquakes by simply using their laptop computers at home. In doing so, the laptops join a network of computers designed to take a dense set of measurements that can help capture an earthquake.

Anyone with a personal computer will be able to participate in the experiment once software linking such computers to the project is publicly released, tentatively this summer. The free software, being developed by Cochran and colleagues Jesse Lawrence of Stanford University and Carl Christensen, a software architect and consultant, will be available at the Website BOINC.

Because the project makes use of inexpensive motion sensors, called accelerometers, which are already in place as safety devices in most new laptops, participants incur no significant costs related to the project.

Called “Quake-Catcher Network,” the project involves distributed computing, a method in which different parts of a computer program run simultaneously on two or more computers that are in communication with a central server over a network.

“We’re turning the laptops’ accelerometers into earthquake monitors,” said Cochran, an assistant professor of seismology in the Department of Earth Sciences. “With a dense grid of detectors in place, an early warning can be sent through the Internet to neighboring cities should an earthquake strike, giving people up to 10-20 seconds to prepare themselves before the seismic waves reach them.”

Already, about 300 people spread around the world are taking part in the Quake-Catcher Network, with roughly a third of the participants in the United States.

“The idea is to fill in the spaces – or holes – in the seismic network currently being used to report earthquakes,” Cochran said. “With the public’s participation in Quake-Catcher Network, however, we can have a lot more ‘stations’ recording earthquakes, allowing for a better early warning system. At present in California, no such early warning system for earthquakes exists.”

Currently, approximately 350 stations monitor earthquakes in Southern California using underground sensors. They do so, however, not in real time.

“There is a delay of 10-15 seconds from when the sensors record an earthquake to when the data is processed at either Caltech in Southern California or UC Berkeley in Northern California,” Cochran explained. “Quake-Catcher Network would process data in real time, as it comes in. And the network can stretch out to any region of the world. Besides being inexpensive, it makes an extremely small demand on CPU resources.”

According to Cochran, a person’s laptop needs to remain inactive for at least three minutes before the system starts up. “This is to get rid of noise in the data and to ensure that any movement the laptop’s accelerometer is detecting is indeed out of the ordinary,” she said.

Currently, only Apple computers can participate in the project, but Cochran and her colleagues are working on including other computers in Quake-Catcher Network.

“We also are working on developing an accelerometer which can be plugged into a desktop like a USB flash drive,” she said. “That way, we’d have less interference from typing on the keyboard. It also would allow for a more robust and reliable system, with computers running the software all of the time.”

Cochran said she plans to make all the data gathered by the sensors freely available to researchers and the public.

“This data can be used to study how a seismic wave propagates in the ground,” she said. “How fast a wave travels can give us useful information, such as more details on seismic hazard as well as the structure of the Earth. The denser our network, the clearer will be the picture of what is happening at each step in time. A series of such pictures could be used to develop a movie showing the wave’s propagation, which could give us extremely useful information about seismic waves.”

Next, Cochran and her colleagues will further test their software program before its release on BOINC; currently, the program is available on very limited release.

Cochran also plans to involve K-12 schools through education and outreach. “We think this would be an excellent project for students to take an interest in,” she said, “so we’re hoping we’ll see more of their participation.”

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>