Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsquake detection sensors will take search for water underground

31.05.2002


Researchers at Imperial College London have just begun a 5-year project to design and build tiny earthquake measuring devices to go to Mars on the 2007 NetLander mission.


A microseismometer machined out of a single piece of silicon. The central rectangular weight is attached by two springs to a surrounding frame.
© Imperial College of Science, Technology and Medicine


Unlike the instruments on next year`s European Mars Express/Beagle II mission, the Marsquake sensors will be the first to look deep inside the planet.

The internal structure of Mars is a key to understanding some fundamental questions about the planet including whether life ever existed there.

The sensors are capable of detecting liquid water reservoirs hidden below the surface, where life could possibly survive on Mars today. The recent discovery by the Mars Odyssey orbiter of large amounts of ice at the poles opens up the possibility of liquid water existing in the warmer conditions underground near the Martian equator.



Dr Tom Pike, of Imperial College London, is designing the heart of the sensor, a two-centimetre square of silicon.

"We`re micromachining a near-perfect spring and weight from a single piece of silicon. We`ll be able to detect the weight shuddering in response to a Marsquake from anywhere on the planet," he said.

The 2007 NetLander mission, led by the French space agency, CNES, will land four modules across the surface of Mars, each containing instruments to look at the structure and weather of Mars on a global scale. All four will be near the equator.

"The network of instruments will help us to pinpoint each Marsquake by triangulation," said Dr Pike. "We`ll look at how the vibrations from Marsquakes travel through the planet and work out what`s going on deep inside. If these vibrations hit liquid water under the landing sites, we should see a distinctive signature. That`s when the search for life on Mars will move underground."

Dr Pike is currently building up the team at Imperial College to develop the sensors under a contract from the Jet Propulsion Laboratory. The Rutherford Appleton Laboratory, Oxfordshire, is providing the fabrication facilities. The Marsquake instrument consortium includes Imperial College, NASA`s Jet Propulsion Laboratory in Pasadena, the Institute de Physique du Globe in Paris and ETH, Zurich.

Tom Miller | alphagalileo

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>