Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsquake detection sensors will take search for water underground

31.05.2002


Researchers at Imperial College London have just begun a 5-year project to design and build tiny earthquake measuring devices to go to Mars on the 2007 NetLander mission.


A microseismometer machined out of a single piece of silicon. The central rectangular weight is attached by two springs to a surrounding frame.
© Imperial College of Science, Technology and Medicine


Unlike the instruments on next year`s European Mars Express/Beagle II mission, the Marsquake sensors will be the first to look deep inside the planet.

The internal structure of Mars is a key to understanding some fundamental questions about the planet including whether life ever existed there.

The sensors are capable of detecting liquid water reservoirs hidden below the surface, where life could possibly survive on Mars today. The recent discovery by the Mars Odyssey orbiter of large amounts of ice at the poles opens up the possibility of liquid water existing in the warmer conditions underground near the Martian equator.



Dr Tom Pike, of Imperial College London, is designing the heart of the sensor, a two-centimetre square of silicon.

"We`re micromachining a near-perfect spring and weight from a single piece of silicon. We`ll be able to detect the weight shuddering in response to a Marsquake from anywhere on the planet," he said.

The 2007 NetLander mission, led by the French space agency, CNES, will land four modules across the surface of Mars, each containing instruments to look at the structure and weather of Mars on a global scale. All four will be near the equator.

"The network of instruments will help us to pinpoint each Marsquake by triangulation," said Dr Pike. "We`ll look at how the vibrations from Marsquakes travel through the planet and work out what`s going on deep inside. If these vibrations hit liquid water under the landing sites, we should see a distinctive signature. That`s when the search for life on Mars will move underground."

Dr Pike is currently building up the team at Imperial College to develop the sensors under a contract from the Jet Propulsion Laboratory. The Rutherford Appleton Laboratory, Oxfordshire, is providing the fabrication facilities. The Marsquake instrument consortium includes Imperial College, NASA`s Jet Propulsion Laboratory in Pasadena, the Institute de Physique du Globe in Paris and ETH, Zurich.

Tom Miller | alphagalileo

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>