Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tipping elements in the Earth's climate system

05.02.2008
Anthropogenic forcing could push the Earth's climate system past critical thresholds, so that important components may "tip" into qualitatively different modes of operation.

In the renowned magazine "Proceedings of the National Academy of Sciences" (PNAS) an international team of researchers describes, where small changes can have large long-term consequences on human and ecological systems.

"Society may be lulled into a false sense of security by smooth projections of global change," the researchers around Timothy Lenton from the British University of East Anglia in Norwich and Hans Joachim Schellnhuber from the Potsdam Institute for Climate Impact Research report. Global change may appear to be a slow and gradual process on human scales. However, in some regions anthropogenic forcing on the climate system could kick start abrupt and potentially irreversible changes. For these sub-systems of the Earth system the researchers introduce the term "tipping element".

Drawing on a workshop of 36 leading climate scientists in October 2005 at the British Embassy, Berlin, Germany, a further elicitation of 52 experts in the field, and a review of the pertinent literature, the authors compiled a short-list of nine potential tipping elements. These tipping elements are ranked as the most policy-relevant and require consideration in international climate politics.

Arctic sea-ice and the Greenland Ice Sheet are regarded as the most sensitive tipping elements with the smallest uncertainty. Scientists expect ice cover to dwindle due to global warming. The West Antarctic Ice Sheet is probably less sensitive as a tipping element, but projections of its future behavior have large uncertainty. This also applies to the Amazon rainforest and Boreal forests, the El Niño phenomenon, and the West African monsoon. "These tipping elements are candidates for surprising society by exhibiting a nearby tipping point," the authors state in the article that is published in PNAS Online Early Edition. The archetypal example of a tipping element, the Atlantic thermohaline circulation, could undergo a large abrupt transition with up to ten percent probability within this century, according to the UN climate report from 2007.

Given the scale of potentially dramatic impacts from tipping elements the researchers anticipate stronger mitigation. Concepts for adaptation that go beyond current incremental approaches are also necessary. In addition, "a rigorous study of potential tipping elements in human socio-economic systems would also be welcome," the researchers write. Some models suggest there are tipping points to be passed for the transition to a low carbon society.

Highly sensitive tipping elements, smallest uncertainty:

Greenland Ice Sheet - Warming over the ice sheet accelerates ice loss from outlet glaciers and lowers ice altitude at the periphery, which further increases surface temperature and ablation. The exact tipping point for disintegration of the ice sheet is unknown, since current models cannot capture the observed dynamic deglaciation processes accurately. But in a worst case scenario local warming of more than three degrees Celsius could cause the ice sheet to disappear within 300 years. This would result in a rise of sea level of up to seven meters.

Arctic sea-ice - As sea-ice melts, it exposes a much darker ocean surface, which absorbs more radiation than white sea-ice so that the warming is amplified. This causes more rapid melting in summer and decreases ice formation in winter. Over the last 16 years ice cover during summer declined markedly. The critical threshold global mean warming may be between 0.5 to 2 degrees Celsius, but could already have been passed. One model shows a nonlinear transition to a potential new stable state with no arctic sea-ice during summer within a few decades.

Intermediately sensitive tipping elements, large uncertainty:

West Antarctic Ice Sheet - Recent gravity measurements suggest that the ice sheet is losing mass. Since most of the ice sheet is grounded below sea level the intrusion of ocean water could destabilize it. The tipping point could be reached with a local warming of five to eight degrees Celsius in summer. A worst case scenario shows the ice sheet could collapse within 300 years, possibly raising sea level by as much as five meters.

Boreal forest - The northern forests exhibit a complex interplay between tree physiology, permafrost and fire. A global mean warming of three to five degrees Celsius could lead to large-scale dieback of the boreal forests within 50 years. Under climate change the trees would be exposed to increasing water stress and peak summer heat and would be more vulnerable to diseases. Temperate tree species will remain excluded due to frost damage in still very cold winters.

Amazon rainforest - Global warming and deforestation will probably reduce rainfall in the region by up to 30 percent. Lengthening of the dry season, and increases in summer temperatures would make it difficult for the forest to re-establish. Models project dieback of the Amazon rainforest to occur under three to four degrees Celsius global warming within fifty years. Even land-use change alone could potentially bring forest cover to a critical threshold.

El Niño Southern Oscillation (ENSO) - The variability of this ocean-atmosphere mode is controlled by the layering of water of different temperatures in the Pacific Ocean and the temperature gradient across the equator. During the globally three degrees Celsius warmer early Pliocene ENSO may have been suppressed in favor of persistent El Niño or La Niña conditions. In response to a warmer stabilized climate, the most realistic models simulate increased El Niño amplitude with no clear change in frequency.

Sahara/Sahel- and West African monsoon - The amount of rainfall is closely related to vegetation climate feedback and sea surface temperatures of the Atlantic Ocean. Greenhouse gas forcing is expected to increase Sahel rainfall. But a global mean warming of three to five degrees Celsius could cause a collapse of the West African monsoon. This could lead either to drying of the Sahel or to wetting due to increased inflow from the West. A third scenario shows a possible doubling of anomalously dry years by the end of the century.

Indian summer monsoon - The monsoon circulation is driven by a land-to-ocean pressure gradient. Greenhouse warming tends to strengthen the monsoon since warmer air can carry more water. Air pollution and land-use that increases the reflection of sunlight tend to weaken it. The Indian summer monsoon could become erratic and in the worst case start to chaotically change between an active and a weak phase within a few years.

Lowly sensitive tipping elements, intermediate uncertainty:

Atlantic thermohaline circulation - The circulation of sea currents in the Atlantic Ocean is driven by seawater that flows to the North Atlantic, cools and sinks at high latitudes. If the inflow of freshwater increases, e.g. from rivers or melting glaciers, or the seawater is warmed, its density would decrease. A global mean warming of three to five degrees Celsius could push the element past the tipping point so that deep water formation stops. Under these conditions the North Atlantic current would be disrupted, sea level in the North Atlantic region would rise and the tropical rain belt would be shifted.

Article:
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S. and Schellnhuber, H. J. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences, Online Early Edition
Contact:
PIK Press Office, Uta Pohlmann, email: info@pik-potsdam.de, phone +49 331 288 2507

Uta Pohlmann | idw
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>