Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As waters clear, scientists seek to end a muddy debate

17.12.2007
Geologists have long thought muds will only settle when waters are quiet, but new research by Indiana University Bloomington and Massachusetts Institute of Technology geologists shows muds will accumulate even when currents move swiftly. Their findings appear in this week's Science.

This may seem a trifling matter at first, but understanding the deposition of mud could significantly impact a number of public and private endeavors, from harbor and canal engineering to oil reservoir management and fossil fuel prospecting.

"Mudstones make up two-thirds of the sedimentary geological record," said IU Bloomington geologist Juergen Schieber, who led the study. "One thing we are very certain of is that our findings will influence how geologists and paleontologists reconstruct Earth's past."

Previously geologists had thought that constant, rapid water flow prevented mud's constituents -- silts and clays -- from coalescing and gathering at the bottoms of rivers, lakes and oceans. This has led to a bias, Schieber explains, that wherever mudstones are encountered in the sedimentary rock record, they are generally interpreted as quiet water deposits.

"But we suspected this did not have to be the case," Schieber said. "All you have to do is look around. After the creek on our university's campus floods, you can see ripples on the sidewalks once the waters have subsided. Closely examined, these ripples consist of mud. Sedimentary geologists have assumed up until now that only sand can form ripples and that mud particles are too small and settle too slowly to do the same thing. We just needed to demonstrate it that it can actually happen under controlled conditions."

Schieber and IU graduate student Kevin Thaisen used a specially designed "mud flume" to simulate mud deposition in natural flows. The oval-shaped apparatus resembles a race track. A motorized paddle belt keeps water moving in one direction at a pre-determined speed, say, 26 centimeters per second (about 0.6 miles per hour). The concentration of dispersed sediment, temperature, salinity, and a dozen other parameters can be controlled. M.I.T. veteran sedimentologist John Southard provided advice on the construction and operation of the mud flume used in the experiments.

For their experiments, the scientists used calcium montmorillonite and kaolinite, extremely fine clays that in dry form have the feel of facial powder. Most geologists would have predicted that these tiny mineral grains could not settle easily from rapidly moving water, but the flume experiments showed that mud was traveling on the bottom of the flume after a short time period. Experiments with natural lake muds showed the same results.

"We found that mud beds accumulate at flow velocities that are much higher than what anyone would have expected," said Schieber, who, because of the white color of the clay suspensions, calls this ongoing work the "sedimentology of milk."

The mud accumulates slowly at first, in the form of heart- or arrowhead-shaped ripples that point upstream. These ripples slowly move with the current while maintaining their overall shapes.

Understanding how and when muds deposit will aid engineers who build harbors and canals, Schieber says, by providing them with new information about the rates at which mud can accumulate from turbid waters. Taking into account local conditions, engineers can build waterways in a way that truly minimizes mud deposition by optimizing tidal and wave-driven water flow. Furthermore, Schieber explains, the knowledge that muds can deposit from moving waters could expand the possible places where oil companies prospect for oil and gas. Organic matter and muds are both sticky and are often found together.

"If anything, when organic matter is present in addition to mud, it enhances mud deposition from fast moving currents," he said.

The finding feels like something of a vindication, Schieber says. He and his colleagues have (genially) argued about whether muds could deposit from rapidly flowing water. Schieber had posited the possibility after noting an apparent oddity in the sedimentary rock record.

"In many ancient mudstones, you see not only deposition, but also erosion and rapid re-deposition of mud -- all in the same place," Schieber said. "The erosive features are at odds with the notion that the waters must have been still all or most of the time. We needed a better explanation."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>