Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Waterborne carbon increases threat of environmental mercury

Mercury is a potent neurotoxin and a worrisome environmental contaminant, but the severity of its threat appears to depend on what else is in the water.

Researchers at the University of Wisconsin-Madison have found that the presence of dissolved organic material increases the biological risk of aqueous mercury and may even serve as an environmental mercury source.

Mercury is present throughout the environment in small quantities in rocks and in watery environments, including lakes, wetlands and oceans. It accumulates in fish living in mercury-contaminated waters, posing a health risk to animals and humans who eat the tainted fish.

The greatest threat comes from a form called methylmercury, which is more easily taken up by living tissues. The methylation process, therefore, is key to understanding the potential danger posed by environmental mercury, says UW-Madison geomicrobiologist John Moreau.

He presented his research findings at the American Geophysical Union meeting in San Francisco today (Dec. 10).

Environmental mercury is predominantly methylated by naturally occurring bacteria known as sulfate-reducing bacteria. These bacteria - Moreau calls them "little methylmercury factories" - absorb inorganic mercury from the water, methylate it and spit methylmercury back out into the environment.

"The bacteria take mercury from a form that is less toxic to humans and turn it into a form that is much more toxic," Moreau says. "[Methylation] increases mercury's toxicity by essentially putting it on a fast train into your tissue - it increases its mobility."

Many previous studies have focused on the chemical interactions between mercury and sulfur, which is known to bind to inorganic mercury and may regulate how well the bacteria can absorb it. However, scientists do not understand the factors that control the methylation process itself.

"Those studies have related methylation potential to geochemical variables," Moreau says. "We would like to take a bacterium that we know methylates mercury very efficiently and let it tell us what it can methylate and what it can't, under given conditions."

Moreau and colleagues at the U.S. Geological Survey, UW-Madison, the University of Colorado and Chapman University chose to look at the role of dissolved organic carbon (DOC), a richly colored brew created as plants and other organic materials decay into a soup of proteins, acids and other compounds. DOC can tint wetlands and streams shades of yellow to dark brown.

DOC has noticeable effects on bacterial mercury processing. "They seem to methylate mercury better with DOC present," says Moreau.

In the current studies, the scientists looked at the effects of DOC samples collected from two different organic-rich environments, a section of the Suwannee River and Florida's Everglades.

"We found that different DOCs have different positive effects on methylation - they both seem to promote mercury methylation, but to different degrees," Moreau explains.

Because DOC is virtually ubiquitous in aqueous environments, its effect on mercury processing may be an important factor in determining mercury bioavailability.

Moreau and his colleagues are now working to understand how DOC promotes methylation. One possibility is that DOC acts indirectly by increasing bacterial growth, while another is that DOC may directly interact with the mercury itself to boost its ability to enter bacteria.

Although mercury already in the environment is there to stay, Moreau says an understanding of what regulates mercury toxicity is critical for developing ecosystem-level management strategies.

"Strategies to deal with methylmercury production [should] lead to hopefully more efficient ways to reduce human consumption of methylmercury and lead to less potential human health problems," he says.

John Moreau | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>