Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waterborne carbon increases threat of environmental mercury

12.12.2007
Mercury is a potent neurotoxin and a worrisome environmental contaminant, but the severity of its threat appears to depend on what else is in the water.

Researchers at the University of Wisconsin-Madison have found that the presence of dissolved organic material increases the biological risk of aqueous mercury and may even serve as an environmental mercury source.

Mercury is present throughout the environment in small quantities in rocks and in watery environments, including lakes, wetlands and oceans. It accumulates in fish living in mercury-contaminated waters, posing a health risk to animals and humans who eat the tainted fish.

The greatest threat comes from a form called methylmercury, which is more easily taken up by living tissues. The methylation process, therefore, is key to understanding the potential danger posed by environmental mercury, says UW-Madison geomicrobiologist John Moreau.

He presented his research findings at the American Geophysical Union meeting in San Francisco today (Dec. 10).

Environmental mercury is predominantly methylated by naturally occurring bacteria known as sulfate-reducing bacteria. These bacteria - Moreau calls them "little methylmercury factories" - absorb inorganic mercury from the water, methylate it and spit methylmercury back out into the environment.

"The bacteria take mercury from a form that is less toxic to humans and turn it into a form that is much more toxic," Moreau says. "[Methylation] increases mercury's toxicity by essentially putting it on a fast train into your tissue - it increases its mobility."

Many previous studies have focused on the chemical interactions between mercury and sulfur, which is known to bind to inorganic mercury and may regulate how well the bacteria can absorb it. However, scientists do not understand the factors that control the methylation process itself.

"Those studies have related methylation potential to geochemical variables," Moreau says. "We would like to take a bacterium that we know methylates mercury very efficiently and let it tell us what it can methylate and what it can't, under given conditions."

Moreau and colleagues at the U.S. Geological Survey, UW-Madison, the University of Colorado and Chapman University chose to look at the role of dissolved organic carbon (DOC), a richly colored brew created as plants and other organic materials decay into a soup of proteins, acids and other compounds. DOC can tint wetlands and streams shades of yellow to dark brown.

DOC has noticeable effects on bacterial mercury processing. "They seem to methylate mercury better with DOC present," says Moreau.

In the current studies, the scientists looked at the effects of DOC samples collected from two different organic-rich environments, a section of the Suwannee River and Florida's Everglades.

"We found that different DOCs have different positive effects on methylation - they both seem to promote mercury methylation, but to different degrees," Moreau explains.

Because DOC is virtually ubiquitous in aqueous environments, its effect on mercury processing may be an important factor in determining mercury bioavailability.

Moreau and his colleagues are now working to understand how DOC promotes methylation. One possibility is that DOC acts indirectly by increasing bacterial growth, while another is that DOC may directly interact with the mercury itself to boost its ability to enter bacteria.

Although mercury already in the environment is there to stay, Moreau says an understanding of what regulates mercury toxicity is critical for developing ecosystem-level management strategies.

"Strategies to deal with methylmercury production [should] lead to hopefully more efficient ways to reduce human consumption of methylmercury and lead to less potential human health problems," he says.

John Moreau | EurekAlert!
Further information:
http://www.geology.wisc.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>