Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waterborne carbon increases threat of environmental mercury

12.12.2007
Mercury is a potent neurotoxin and a worrisome environmental contaminant, but the severity of its threat appears to depend on what else is in the water.

Researchers at the University of Wisconsin-Madison have found that the presence of dissolved organic material increases the biological risk of aqueous mercury and may even serve as an environmental mercury source.

Mercury is present throughout the environment in small quantities in rocks and in watery environments, including lakes, wetlands and oceans. It accumulates in fish living in mercury-contaminated waters, posing a health risk to animals and humans who eat the tainted fish.

The greatest threat comes from a form called methylmercury, which is more easily taken up by living tissues. The methylation process, therefore, is key to understanding the potential danger posed by environmental mercury, says UW-Madison geomicrobiologist John Moreau.

He presented his research findings at the American Geophysical Union meeting in San Francisco today (Dec. 10).

Environmental mercury is predominantly methylated by naturally occurring bacteria known as sulfate-reducing bacteria. These bacteria - Moreau calls them "little methylmercury factories" - absorb inorganic mercury from the water, methylate it and spit methylmercury back out into the environment.

"The bacteria take mercury from a form that is less toxic to humans and turn it into a form that is much more toxic," Moreau says. "[Methylation] increases mercury's toxicity by essentially putting it on a fast train into your tissue - it increases its mobility."

Many previous studies have focused on the chemical interactions between mercury and sulfur, which is known to bind to inorganic mercury and may regulate how well the bacteria can absorb it. However, scientists do not understand the factors that control the methylation process itself.

"Those studies have related methylation potential to geochemical variables," Moreau says. "We would like to take a bacterium that we know methylates mercury very efficiently and let it tell us what it can methylate and what it can't, under given conditions."

Moreau and colleagues at the U.S. Geological Survey, UW-Madison, the University of Colorado and Chapman University chose to look at the role of dissolved organic carbon (DOC), a richly colored brew created as plants and other organic materials decay into a soup of proteins, acids and other compounds. DOC can tint wetlands and streams shades of yellow to dark brown.

DOC has noticeable effects on bacterial mercury processing. "They seem to methylate mercury better with DOC present," says Moreau.

In the current studies, the scientists looked at the effects of DOC samples collected from two different organic-rich environments, a section of the Suwannee River and Florida's Everglades.

"We found that different DOCs have different positive effects on methylation - they both seem to promote mercury methylation, but to different degrees," Moreau explains.

Because DOC is virtually ubiquitous in aqueous environments, its effect on mercury processing may be an important factor in determining mercury bioavailability.

Moreau and his colleagues are now working to understand how DOC promotes methylation. One possibility is that DOC acts indirectly by increasing bacterial growth, while another is that DOC may directly interact with the mercury itself to boost its ability to enter bacteria.

Although mercury already in the environment is there to stay, Moreau says an understanding of what regulates mercury toxicity is critical for developing ecosystem-level management strategies.

"Strategies to deal with methylmercury production [should] lead to hopefully more efficient ways to reduce human consumption of methylmercury and lead to less potential human health problems," he says.

John Moreau | EurekAlert!
Further information:
http://www.geology.wisc.edu

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>