Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional warming triggers sustained mass loss in Northeast Greenland ice sheet

17.03.2014

Northeast Greenland, where the glacier is found, is of particular interest as numerical model predictions have suggested there is no significant mass loss for this sector, leading to a probable underestimation of future global sea-level rise from the region.

An international team of scientists, including Professor Jonathan Bamber from the University of Bristol, studied the Northeast Greenland Ice Stream which extends more than 600 km into the interior of the ice sheet: much further than any other in Greenland.

Professor Bamber said: "The Greenland ice sheet has contributed more than any other ice mass to sea level rise over the last two decades and has the potential, if it were completely melted, to raise global sea level by more than seven metres.

"About half of the increased contribution of the ice sheet is due to the speed up of glaciers in the south and northwest. Until recently, Northeast Greenland has been relatively stable. This new study shows that is no longer the case."

The researchers analysed a large collection of historical aerial photography, radar measurements and satellite data that measure the surface elevation, ice speed and bed elevation of the Northeast Greenland Ice Stream.

They found that the glacier started to speed up and lose mass around 2003 as a consequence of a localised increase in temperatures. Their results also showed that mass loss has continued up to the most recent observations in 2012 despite regional temperatures falling back to more typical values.

Professor Bamber said: "Most projections of the future behaviour of the ice sheet have no, or little, contribution from this part of Greenland but these new results suggest that this region is sensitive to changes in climate and has the potential to contribute significantly now and in the future."

###

Paper

'Sustained mass loss of the Northeast Greenland ice sheet triggered by regional warming' by Shfaqat A. Khan, Kurt H. Kjær, Michael Bevis, Jonathan L. Bamber, John Wahr, Kristian K. Kjeldsen, Anders A. Bjørk, Niels J. Korsgaard, Leigh A. Stearns, Michiel R. van den Broeke, Lin Liu, Nicolaj K. Larsen and Ioana S. Muresan in Nature Climate Change

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Bristol Greenland Nature large satellite sensitive stable temperatures triggers

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>