Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional insights set latest study of climate history apart

23.04.2013
As climate studies saturate scientific journals and mainstream media, with opposing viewpoints quickly squaring off in reaction and debate, new findings can easily be lost in the noise.
But in the case of Northern Arizona University Regents’ professor Darrell Kaufman and a study appearing in Nature Geoscience, obscurity is an unlikely fate.

What Kaufman—the lead co-author of “Continental-scale temperature variability during the last two millennia”—and 78 experts from 24 countries have done is to assemble the most comprehensive study to date of temperature change of Earth’s continents over the past 1,000 to 2,000 years.

By looking regionally, the researchers found considerable complexity hidden within a global average.

“We wanted a new and ambitious effort to reconstruct past climate,” Kaufman said of the PAGES 2k network of researchers. “One of the strongest aspects of the consortium study is that it relies on regional expertise.”

Members of the consortium represent eight continental-scale regions. They lent their insights about the best proxy records—such as tree-ring measurements—to use for a particular region, and how to interpret the data based on regional climatology.

While the study does not attempt to attribute temperature changes to natural or human-caused factors, Kaufman said the finding of a long-term global cooling trend that ended late in the 19th century is further evidence that increased greenhouse gasses have had an influence in later years.

“The pre-industrial trend was likely caused by natural factors that continued to operate through the 20th century, making 20th century warming more difficult to explain if not for the likely impact of increased greenhouse gasses,” Kaufman said.

While that sounds like a familiar theme, the study’s findings of regional variations are less well known. Because of extensive participation by scientists working in the Southern Hemisphere, Kaufman said, data from those regions broadened what had been a view previously centered on Europe.

“We know the most about the long-term temperature history in Europe, but we find that not every region conforms with that pattern,” Kaufman said. He noted that temperatures varied by region against the backdrop of the long-term cooling identified by the study.

The regional focus on the past 2,000 years is significant for two reasons, Kaufman said. First, climate change at that scale is more relevant to societies and ecosystems than global averages. And second, “regional scale differences help us to understand how the climate system works, and that information helps to improve the models used to project future climate.”

Kaufman’s own research team added to the strong regional input. His research in Alaska and elsewhere formed part of the dataset.

“The questions that my team hopes to address involve the larger climate system, and our research contributes one piece of the global puzzle,” he said.

Kaufman’s role as lead co-author came about partly from good timing—he was on sabbatical as a visiting scientist at the Bern, Switzerland, headquarters of Past Global Changes (PAGES) organization, as the data were being assembled, so he took the lead in writing the manuscript.

Later, as the paper underwent a substantial reworking to address the scrutiny of peer review, co-author Nick McKay, a post-doctoral researcher at NAU, “did the heavy lifting,” Kaufman said. “He analyzed the data from each of the regions to uncover the most important similarities and differences, which we needed for the synthesis.”

In another of the study’s major contributions, the entire database on which it was based has been tabulated and will be made available publicly for further analysis. Kaufman and his co-authors have posted the data along with frequently asked questions about the study on the PAGES project website.

“My co-authors and I look forward to seeing the data used by others in future analyses because science moves forward with well-informed alternative interpretations,” Kaufman said.

Eric Dieterle | EurekAlert!
Further information:
http://www.nau.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>