Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recent Climate, Glacier Changes in Antarctica at the 'Upper Bound' of Normal

15.04.2013
In the last few decades, glaciers at the edge of the icy continent of Antarctica have been thinning, and research has shown the rate of thinning has accelerated and contributed significantly to sea level rise.

New ice core research suggests that, while the changes are dramatic, they cannot be attributed with confidence to human-caused global warming, said Eric Steig, a University of Washington professor of Earth and space sciences.

Previous work by Steig has shown that rapid thinning of Antarctic glaciers was accompanied by rapid warming and changes in atmospheric circulation near the coast. His research with Qinghua Ding, a UW research associate, showed that the majority of Antarctic warming came during the 1990s in response to El Niño conditions in the tropical Pacific Ocean.

Their new research suggests the '90s were not greatly different from some other decades – such as the 1830s and 1940s – that also showed marked temperature spikes.

"If we could look back at this region of Antarctica in the 1940s and 1830s, we would find that the regional climate would look a lot like it does today, and I think we also would find the glaciers retreating much as they are today," said Steig, lead author of a paper on the findings published online April 14 in Nature Geoscience.

The researchers' results are based on their analysis of a new ice core from the West Antarctic Ice Sheet Divide that goes back 2,000 years, along with a number of other ice core records going back about 200 years. They found that during that time there were several decades that exhibited similar climate patterns as the 1990s.

The most prominent of these in the last 200 years – the 1940s and the 1830s – were also periods of unusual El Niño activity like the 1990s. The implication, Steig said, is that rapid ice loss from Antarctica observed in the last few decades, particularly the '90s, "may not be all that unusual."

The same is not true for the Antarctic Peninsula, the part of the continent closer to South America, where rapid ice loss has been even more dramatic and where the changes are almost certainly a result of human-caused warming, Steig said.

But in the area where the new research was focused, the West Antarctic Ice Sheet, it is more difficult to detect the evidence of human-caused climate change. While changes in recent decades have been unusual and at the "upper bound of normal," Steig said, they cannot be considered exceptional.

"The magnitude of unforced natural variability is very big in this area," Steig said, "and that actually prevents us from answering the questions, 'Is what we have been observing exceptional? Is this going to continue?'"

He said what happens to the West Antarctic Ice Sheet in the next few decades will depend greatly on what happens in the tropics.

The West Antarctic Ice Sheet is made up of layers of ice, greatly compressed, that correspond with a given year's precipitation. Similar to tree rings, evidence preserved in each layer of ice can provide climate information for a specific time in the past at the site where the ice core was taken.

In this case, the researchers detected elevated levels of the isotope oxygen 18 in comparison with the more commonly found oxygen 16. Higher levels of oxygen 18 generally indicate higher air temperatures.

Levels of oxygen 18 in ice core samples from the 1990s were more elevated than for any other time in the last 200 years, but were very similar to levels reached during some earlier decades.

The work was funded by the National Science Foundation Office of Polar Programs.

For more information, contact Steig at 206-685-3715, 206-543-6327 or steig@uw.edu.

An image of a section of the West Antarctic Ice Sheet Divide core is available from vinces@uw.edu.

Co-authors are Qinghua Ding, Marcell Küttel, Peter Neff, Ailie Gallant, Spruce Schoenemann, Bradley Markle, Tyler Fudge, Andrew Schauer and Rebecca Teel of the University of Washington; James White and Bruce Vaughn of the University of Colorado; Summer Rupper, Landon Burgener and Jessica Williams of Brigham Young University; Thomas Neumann of NASA's Goddard Space Flight Center; Paul Mayewski, Daniel Dixon and Elena Korotkikh of the University of Maine; Kendrick Taylor of Desert Research Institute, Reno, Nev.; Georg Hoffmann of the Centre d'Etudes de Saclay in France and Utrecht University in The Netherlands; and David Schneider of the National Center for Atmospheric Research, Boulder, Colo.

Vince Stricherz | Newswise
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>