Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Great Earthquake in April Triggers Large Aftershocks All Over the Globe

27.09.2012
Large earthquakes can alter seismicity patterns across the globe in very different ways, according to two new studies by U.S. Geological Survey seismologists.

Both studies shed light on more than a decade of debate on the origin and prevalence of remotely triggered earthquakes. Until now, distant but damaging “aftershocks” have not been included in hazard assessments, yet in each study, changes in seismicity were predictable enough to be included in future evaluations of earthquake hazards.


Some 380 seconds into the greatest earthquake to rupture since 1960, the simulated dynamic Coulomb stress waves (red-blue) shed continuously off the 2004 M=9.2 Sumatra rupture front can be seen sweeping through the Andaman Sea, where faults remarkably shut down for the next five years. Earthquakes since 1964 are shown as black dots, and the Sunda trench along which the 1400-km-long earthquake occurred is the arcuate black line on the left (west). Sumatra is on the right, and Myanmar/Burma is at top. Sevilgen et al (Proc. Nat. Acad. Sci, 2012) find that despite the magnitude of thesedynamic stress waves, the much smaller permanent stresses account for the change in seismicity after the main shock.

This graphic accompanies the Sept. 3, 2012 article in Proceedings of the National Academy of Sciences by Volkan Sevilgen, Ross Stein and Fred Pollitz.

Seismicity.net

In a study published in this week’s issue of “Nature,” USGS seismologist Fred Pollitz and colleagues analyzed the unprecedented increase in global seismic activity triggered by the Magnitude-8.6 East Indian Ocean quake of April 11, 2012, and in a recently published study in the “Proceedings of the National Academy of Sciences,” seismologist Volkan Sevilgen and his USGS colleagues investigated the near-cessation of seismic activity up to 250 miles away caused by the 2004 M9.2 Sumatra earthquake.

While aftershocks have traditionally been defined as those smaller earthquakes that happen after and nearby the main fault rupture, scientists now recognize that this definition is wrong. Instead, aftershocks are simply earthquakes of any size and location that would not have taken place had the main shock not struck.

“Earthquakes are immense forces of nature, involving complex rock physics and failure mechanisms occurring over time and space scales that cannot be recreated in a laboratory environment,” said USGS Director Marcia McNutt. “A large, unusual event such as the East Indian earthquake last April is a once-in-a-century opportunity to uncover first order responses of the planet to sudden changes in state of stress that bring us a little closer to understanding the mystery of earthquake generation.”

Global aftershock study: April 2012: East Indian Ocean quake triggers many distant quakes

An extraordinary number of earthquakes of M4.5 and greater were triggered worldwide in the six days after the M8.6 East Indian Ocean earthquake in April 2012. These large and potentially damaging quakes, occurring as far away as Mexico and Japan, were triggered within days of the passage of seismic waves from the main shock that generated stresses in Earth’s crust.

The East Indian Ocean event was the largest — by a factor of 10 — strike-slip earthquake ever recorded (the San Andreas is perhaps the most famous strike-slip fault). “Most great earthquakes occur along subduction zones and involve large vertical motions. No other recorded earthquake triggered as many large earthquakes elsewhere around the world as this one,” said Pollitz, “probably because strike-slip faults around the globe were more responsive to the seismic waves produced by a giant strike-slip temblor.”

Another clue in the six days of global aftershocks following the M8.6 quake is that the rate of global quakes during the preceding 6-12 days was extremely low. “Imagine an apple tree, with apples typically ripening and then falling at some steady rate,” Stein said. “If a week goes by without any falling, there will be more very ripe apples on the tree. Now shake the trunk, and many more than normal might drop.”

The authors emphasize that the week of global triggering seen after the East Indian Ocean quake has no bearing on the hypothesis advanced by others that the 2004 M9.2 Sumatra, 2010 M8.8 Maule, Chile, and 2011 M9.0 Tohoku, Japan, are related to each other. Instead, the effect of increased earthquakes lasted a week—not a decade.

Sumatra quake affects faults up to 250 miles away

While global triggering of large aftershocks appears very rare, regional triggering is common and important to understand for post-main shock emergency response and recovery. Sevilgen and his USGS colleagues studied the largest quake to strike in 40 years to understand just how great the reach is on aftershock occurrence. After the M9.2 earthquake in Sumatra in 2004, aftershocks larger than M4.5 ceased for five years along part of a distant series of linked faults known as the Andaman back arc fault system. Along a larger segment of the same system, the sideways-slipping transform earthquakes decreased by two-thirds, while the rate of rift events – earthquakes that happen on a spreading center – increased by 800 percent, according to Sevilgen and his colleagues at the USGS. These very large, but distant seismicity rate changes are unprecedented.

The authors investigated two possible causes for the changes in remote seismicity rates: the dynamic stresses imparted by the main shock rupture, which best explain the global triggering in the April 2012 quake case; and the small but permanent stress changes, which best explain this one. The authors found that the main shock brought the transform fault segments about ¼ bar of pressure farther from static failure, and the rift segments about ¼ bar closer to static failure (for comparison, car tires are inflated with about 3 bars of pressure), which matches the seismic observations.

Why it matters

Incorporating the probability of aftershocks into the hazard assessment of an area is important because the damage of even a moderate aftershock sometimes exceeds that wrought by the main event. For example, a M6.3 aftershock five months after the M7.1 New Zealand earthquake in 2010 hit a more populated area, causing 181 deaths and tripling the insured property damage of the main event.

The papers are:

Fred F. Pollitz (USGS), Ross S. Stein (USGS), Volkan Sevilgen (USGS contractor), Roland Bürgmann (UC Berkeley), The 11 April 2012 M=8.6 East Indian Ocean earthquake triggered large aftershocks worldwide, Nature, doi: 10.1038/nature11504

Volkan Sevilgen, Ross S. Stein, and Fred F. Pollitz, Stress imparted by the great 2004 Sumatra earthquake shut down transforms and activated rifts up to 400 km away in the Andaman Sea, Proc Natl Acad Sci USA, doi: 10.1073/pnas.1208799109 [includes animation]

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.
Subscribe to our news releases via e-mail, RSS or Twitter.

Links and contacts within this release are valid at the time of publication.
Contact Information:
U.S. Department of the Interior, U.S. Geological Survey
Office of Communications and Publishing
12201 Sunrise Valley Dr, MS 119
Reston, VA 20192

Barbara Wilcox | EurekAlert!
Further information:
http://www.usgs.gov
http://www.usgs.gov/newsroom/article.asp?ID=3408

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>