Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop speeds defy expectations

12.06.2009
It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier.

And no raindrop can fall faster than its "terminal speed"--its speed when the downward force of gravity is exactly the same as the upward air resistance. Now, a team of U.S. and Mexican researchers has found that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops of that size and weight are supposed to be able to fall. And that could mean that the weatherman has been overestimating how much it rains, the scientists say.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," explains Raymond Shaw, a physicist at Michigan Technological University in Houghton and a member of the research team. "If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded."

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," he notes. The new results could alter scientists'

understanding of the physics of rain and improve the accuracy of weather measurement and prediction.

Shaw, Alexander Kostinski, also of Michigan Tech, and Guillermo Montero-Martinez and Fernando Garcia-Garcia of the Universidad Nacional Autonoma de Mexico (National University of Mexico) in Mexico City, will publish their findings Saturday, June 13, in the American Geophysical Union's journal, Geophysical Research Letters.

During natural rainfalls at the Mexico campus, the researchers gathered data on approximately 64,000 raindrops over three years.

To study the raindrops, they used optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm, or computational formula, to analyze raindrop sizes.

The scientists found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. Images revealed that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw says. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

This research was supported in part by the National Science Foundation.

Title:
"Do all raindrops fall at terminal speed?"
Authors:
Guillermo Montero-Martinez: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico;

Alexander B. Kostinski: Department of Physics, Michigan Technological University, Houghton, Michigan, USA;

Raymond A. Shaw: Department of Physics, Michigan Technological University, Houghton,Michigan, USA;

Fernando Garcia-Garcia: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico.

Citation:
Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia- Garcia (2009), Do all raindrops fall at terminal speed?, Geophys.

Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>