Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop speeds defy expectations

12.06.2009
It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier.

And no raindrop can fall faster than its "terminal speed"--its speed when the downward force of gravity is exactly the same as the upward air resistance. Now, a team of U.S. and Mexican researchers has found that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops of that size and weight are supposed to be able to fall. And that could mean that the weatherman has been overestimating how much it rains, the scientists say.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," explains Raymond Shaw, a physicist at Michigan Technological University in Houghton and a member of the research team. "If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded."

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," he notes. The new results could alter scientists'

understanding of the physics of rain and improve the accuracy of weather measurement and prediction.

Shaw, Alexander Kostinski, also of Michigan Tech, and Guillermo Montero-Martinez and Fernando Garcia-Garcia of the Universidad Nacional Autonoma de Mexico (National University of Mexico) in Mexico City, will publish their findings Saturday, June 13, in the American Geophysical Union's journal, Geophysical Research Letters.

During natural rainfalls at the Mexico campus, the researchers gathered data on approximately 64,000 raindrops over three years.

To study the raindrops, they used optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm, or computational formula, to analyze raindrop sizes.

The scientists found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. Images revealed that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw says. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

This research was supported in part by the National Science Foundation.

Title:
"Do all raindrops fall at terminal speed?"
Authors:
Guillermo Montero-Martinez: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico;

Alexander B. Kostinski: Department of Physics, Michigan Technological University, Houghton, Michigan, USA;

Raymond A. Shaw: Department of Physics, Michigan Technological University, Houghton,Michigan, USA;

Fernando Garcia-Garcia: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico.

Citation:
Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia- Garcia (2009), Do all raindrops fall at terminal speed?, Geophys.

Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>