Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop speeds defy expectations

12.06.2009
It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier.

And no raindrop can fall faster than its "terminal speed"--its speed when the downward force of gravity is exactly the same as the upward air resistance. Now, a team of U.S. and Mexican researchers has found that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops of that size and weight are supposed to be able to fall. And that could mean that the weatherman has been overestimating how much it rains, the scientists say.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," explains Raymond Shaw, a physicist at Michigan Technological University in Houghton and a member of the research team. "If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded."

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," he notes. The new results could alter scientists'

understanding of the physics of rain and improve the accuracy of weather measurement and prediction.

Shaw, Alexander Kostinski, also of Michigan Tech, and Guillermo Montero-Martinez and Fernando Garcia-Garcia of the Universidad Nacional Autonoma de Mexico (National University of Mexico) in Mexico City, will publish their findings Saturday, June 13, in the American Geophysical Union's journal, Geophysical Research Letters.

During natural rainfalls at the Mexico campus, the researchers gathered data on approximately 64,000 raindrops over three years.

To study the raindrops, they used optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm, or computational formula, to analyze raindrop sizes.

The scientists found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. Images revealed that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw says. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

This research was supported in part by the National Science Foundation.

Title:
"Do all raindrops fall at terminal speed?"
Authors:
Guillermo Montero-Martinez: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico;

Alexander B. Kostinski: Department of Physics, Michigan Technological University, Houghton, Michigan, USA;

Raymond A. Shaw: Department of Physics, Michigan Technological University, Houghton,Michigan, USA;

Fernando Garcia-Garcia: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico.

Citation:
Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia- Garcia (2009), Do all raindrops fall at terminal speed?, Geophys.

Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>