Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue study projects weakened monsoon season in South Asia

02.03.2009
The South Asian summer monsoon - critical to agriculture in Bangladesh, India, Nepal and Pakistan - could be weakened and delayed due to rising temperatures in the future, according to a recent climate modeling study.

A Purdue University research group found that climate change could influence monsoon dynamics and cause less summer precipitation, a delay in the start of monsoon season and longer breaks between the rainy periods.

Noah Diffenbaugh, whose research group led the study, said the summer monsoon affects water resources, agriculture, economics, ecosystems and human health throughout South Asia.

"Almost half of the world's population lives in areas affected by these monsoons, and even slight deviations from the normal monsoon pattern can have great impact," said Diffenbaugh, an associate professor of earth and atmospheric sciences and interim director of the Purdue Climate Change Research Center. "Agricultural production, water availability and hydroelectric power generation could be substantially affected by delayed monsoon onset and reduced surface runoff. Alternatively, the model projects increases in precipitation over some areas, including Bangladesh, which could exacerbate seasonal flood risks."

The summer monsoons are responsible for approximately 75 percent of the total annual rainfall in major parts of the region and produce almost 90 percent of India's water supply, he said.

General circulation models have been used for projections of what may happen to monsoon patterns for this region, but the models have disagreed as to whether precipitation will increase or decrease, said Moetasim Ashfaq, lead author of the study and a graduate student in earth and atmospheric sciences at Purdue.

"South Asia is a unique region with very complex topography," he said. "It ranges from 0 meters elevation from sea level in the south to more than 5,500 meters from sea level in the north. So in terms of topography playing a role in climate and weather, this region of the world is where we expect to see a large impact. Global models like the ones featured in the Intergovernmental Panel on Climate Change reports can resolve large-scale interactions but have difficulty capturing some of the more subtle atmospheric processes."

The research team used a high-resolution climate model believed to have the greatest detail currently available for this region. A paper detailing the work was published in the Jan. 3 issue of Geophysical Research Letters. Co-authors from Purdue include assistant professor Wen-wen Tung and associate professor Robert J. Trapp, both from the Department of Earth and Atmospheric Sciences. Additional co-authors include Ying Shi and Xueijie Gao of the National Climate Centre in Beijing and Jeremy S. Pal of Loyola Marymount University.

"Our simulations are the most detailed to date for this part of the world, but it doesn't mean we have the answer," Diffenbaugh said. "It highlights the importance of spatial complexity in the climate response and suggests that understanding the potential impacts of future climate change in this region requires improved understanding of a host of climate processes."

The model projected a delay in the start of monsoon season from five days to 15 days by the end of the 21st century and an overall weakening of the summer monsoon precipitation over South Asia. Ashfaq said increasing temperatures in the future strengthen some aspects of large-scale monsoon circulation but weaken the fine-scale interactions of the land with the moisture in the atmosphere, which could lead to reduced precipitation over the Indian subcontinent.

"It is the more subtle, local-scale processes that are key in this case," he said. "Our model shows a decrease in convective precipitation, which is critical for summer precipitation in this region. Our findings show it is not just a question of whether monsoon circulation is stronger or weaker. Even with a strong monsoon system, if circulation changes enough to change where and when rain is delivered, then that could have an impact that has not been captured in the large-scale evaluations."

The atmospheric conditions that lead to reduced precipitation also can lead to intensification of extremely hot conditions, he said.

"In the past when we have seen extremely hot days, we have observed a similar circulation anomaly," Ashfaq said. "These circulation changes decrease moisture flow over the land, and we see longer periods without rain, along with hot conditions."

The model shows an eastward shift in monsoon circulation, which would mean more rainfall over the Indian Ocean, Bangladesh and Myanmar, and less over India, Nepal and Pakistan, Ashfaq said. Less moisture over the land in combination with the ambient dry summer air would lead to less moisture in the clouds and reduced rainfall.

Monsoon moisture flow comes from ocean to land. In the summer, the land warms faster than the ocean. This creates a pressure gradient that draws air masses from the ocean to the continent, bringing moist air that promotes formation of a large-scale monsoon system.

Monsoon season, which starts in early June and ends in late September, begins at the southeast tip of India and moves northwest to the rest of India and Pakistan.

The climate model used by the research team accurately recreated the monsoon season of past years, and its future projections are consistent with what has been seen in recent drought years over this region, Diffenbaugh said.

The team next plans to examine a broader range of global climate models and to assess the impact of potential future changes on food security and the economy.

The National Science Foundation partially funded this research.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Sources: Noah Diffenbaugh, (765) 490-7288, diffenbaugh@purdue.edu
Moetasim Ashfaq, (765) 494-2434, mashfaq@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>