Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric Rocks Contain Clues for Future Climate

25.09.2012
For most of the past decade, Dr. Wan Yang has spent his summers in the Bogda Mountains in northwest China, collecting rock samples that predate dinosaurs by millions of years in an effort to better understand the history of the earth’s climate and perhaps gain clues about future climate change.

“The formation of rocks has everything to do with climate,” says the associate professor of geological sciences and engineering at Missouri University of Science and Technology. “Different climate settings have different sediments, soil types and vegetation. The beauty of the geological record is that we can see changes in the past, which gives us some guide to predict future changes.”

Yang spends his summers working in northwest China because it’s one of the few places to have a land record from Pangea, the supercontinent that existed between 200 million and 350 million years ago. Land records are hard to preserve because they are exposed to the elements, Yang says, so most research has typically been done using marine records instead. The seawater offers better protection of the rocks below, as Missouri S&T students saw first-hand in June during a field course led by Yang and two other professors from Trinity and Guizhou universities in southern China.

After the field course was complete, Yang, along with two Missouri S&T graduate students and collaborators from Chinese institutes, spent six weeks camping and hiking in the high desert, where temperatures averaged between 100 and 120 degrees. The team was surprised to uncover a complete, fossil skeleton of a vertebrate animal while working to collect their samples. The two-foot long skeleton was later covered to protect it from being exposed to the elements.

“Most people don’t realize that 250 million years ago, the greatest, most severe mass extinction in the earth’s history occurred,” Yang says. “That’s when the earth’s climate shifted from icehouse to greenhouse. There are a lot of theories, but we don’t know the real causes of the mass extinction yet.”

Yang returned to Rolla in early August with more than 300 pounds of volcanic ash (known as tuff). Zircon, a special mineral in the ash, can be used to accurately date the rocks and will help to more precisely determine the pace of the terrestrial mass extinction and climatic change, he says.

“There are so many things we would like to know,” he says.

What is known is that after remaining in a greenhouse state for about 230 million years, the earth transitioned back to an icehouse climate roughly 30 million years ago. Since then, the earth’s climate has cycled between glacial and interglacial periods. For example, 18,000 years ago there were glaciers just north of Kansas City, Mo., he says.

“For the last 6,000 years, we’ve been in an interglacial period,” he says. “The climate has been warm but it’s within natural variations. We’ve seen more extreme ones and theoretically, it’s time to go glacial,” Yang says.

Yang plans to return to northwest China on a regular basis throughout his career to conduct more detailed studies in a wider area.

Contact: Missouri S&T Public Relations, 573-341-4328, news@mst.edu

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>