Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution alters isolated thunderstorms

17.12.2009
Wind shear strength determines whether pollution swells or saps storms

New climate research reveals how wind shear -- the same atmospheric conditions that cause bumpy airplane rides -- affects how pollution contributes to isolated thunderstorm clouds. Under strong wind shear conditions, pollution hampers thunderhead formation. But with weak wind shear, pollution does the opposite and makes storms stronger.

The work improves climate scientists' understanding of how aerosols -- tiny unseen particles that make up pollution -- contribute to isolated thunderstorms and the climate cycle. How aerosols and clouds interact is one of the least understood aspects of climate, and this work allows researchers to better model clouds and precipitation.

"This finding may provide some guidelines on how man-made aerosols affect the local climate and precipitation, especially for the places where 'afternoon showers' happen frequently and affect the weather system and hydrological cycle," said atmospheric scientist Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory. "Aerosols in the air change the cloud properties, but the changes vary from case to case. With detailed cloud modeling, we found an important factor regulating how aerosols change storms and precipitation."

Fan will discuss her results Thursday, December 17 at the 2009 American Geophysical Union meeting. Her study uses data from skies over Australia and China.

The results provide insight into how to incorporate these types of clouds and conditions into computational climate models to improve their accuracy.

A Model Sky

Deep convective clouds reflect a lot of the sun's energy back into space and return water that has evaporated back to the surface as rain, making them an important part of the climate cycle. The clouds form as lower air rises upwards in a process called convection. The updrafts carry aerosols that can seed cloud droplets, building a storm.

Previous studies produced conflicting results in how aerosols from pollution affect storm development. For example, in some cases, more pollution leads to stronger storms, while in others, less pollution does. Fan and her colleagues used computer simulations to tease out what was going on. Of concern was a weather phenomenon known as wind shear, where horizontal wind speed and direction vary at different heights. Wind shear can be found near weather fronts and is known to influence storms.

The team ran a computer model with atmospheric data collected in northern Australia and eastern China. They simulated the development of eight deep convective clouds by varying the concentration of aerosols, wind shear, and humidity. Then they examined updraft speed and precipitation.

Storm Forming

In the first simulations, the team found that in scenarios containing strong wind shear, more pollution curbed convection. When wind shear was weak, more pollution produced a stronger storm. But convection also changed depending on humidity, so the team wanted to see which effect -- wind shear or humidity -- was more important.

The team took a closer look at two cloud-forming scenarios: one that ended up with the strongest enhancement in updraft speed and one with the weakest. For each scenario, they created a humid and a dry condition, as well as a strong and weak wind shear condition. The trend in the different conditions indicated that wind shear had a much greater effect on updraft strength than humidity.

When the team measured the expected rainfall, they found that the pattern of rainfall followed the pattern of updraft speed. That is, with strong wind shear, more pollution led to less rainfall. When wind shear was weak, more pollution created stronger storms and more rain -- up to a certain point. Beyond a peak level in weak wind shear conditions, pollution led to decreased storm development.

Additional analyses described the physics underlying these results. Water condensing onto aerosol particles releases heat, which contributes to convection and increases updraft speed. The evaporation of water from the cloud droplets cools the air, which reduces the updrafts. In strong wind shear conditions, the cooling effect is always larger than the heating effect, leading to a reduction in updraft speed.

Reference: Jiwen Fan, "Dominant Role by Vertical Wind Shear in Regulating Aerosol Effects on Deep Convective Clouds" in session A43F, Cloud Properties and Physical Processes, Including Aerosol-Cloud Interactions II on Thursday, December 17, 2009, at 2:10 PM, in Moscone West.

J. Fan, T. Yuan, J. M. Comstock, S. Ghan, A. Khain, L. R. Leung, Z. Li, V. J. Martins, M. Ovchinnikov, Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352..

This work was supported by PNNL's Aerosol Climate Initiative.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>