Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilot study reveals storm response of offshore lighthouses

09.12.2015

The unseen responses of remote offshore lighthouse in the face of severe storms are revealed in a new study by Plymouth University.

A team from the School of Marine Science and Engineering considered historical and contemporary observations of the wave impact loading on rock lighthouses during storm conditions.


The Douglass Tower is on the Eddystone Reef off the coast of South West England.

Credit: Helen Nance/Plymouth University

They combined these with data obtained in a pilot study on the Eddystone Lighthouse during the winter of 2013/14, and found the motion of the tower was smaller than might have been suggested by anecdotal observations.

However, the waves still pose a threat with measurements showing they climbed up to 40 metres up the side of a structure not regarded among the most vulnerable lighthouses in the British Isles, let alone globally.

The study, published in the journal Maritime Engineering, was led by Dr Alison Raby, Associate Professor (Reader) in Coastal Engineering at Plymouth University.

She said: "There are about 20 masonry lighthouses around the UK that are exposed to wave action. Although mariners are making ever greater use of satellite-based navigation technologies, the General Lighthouse Authorities recognise the need to retain rock lighthouses as physical aids to navigation. However, there is concern about how well they would withstand the additional wave loading associated with predicted sea level rises and increased storminess."

To assess current impacts, Plymouth University technicians installed a range of measuring equipment on the Douglass tower, the fourth lighthouse sited on the Eddystone Reef (around 14 miles off the coast of Plymouth) and in situ since 1882.

These included remote-controlled video cameras to record the wave conditions around the structure, together with geophone systems to measure any structural response.

Lighthouse engineers working on two other structures off the South West coast - Wolf Rock and Bishop Rock - also provided reports of the visual and physical effects of the storm, much as engineers have done for centuries.

The equipment recorded 2,978 individual events between 20 December 2013 and 14 March 2014, with a maximum wind speed in excess of 100mph and waves spreading up the face at a maximum of 50 metres per second.

Vibration measurements from the geophones gave maximum velocities of 5.5mm/s and highest displacements of around 0.07mm.

A structural model of the tower, validated by these field data, has been used to assess its stability and confirms the tower is within the safe limits for the worst wave measured during these storms.

However, more work is needed to ensure the stability of other rock towers to even more dramatic wave impacts, and funds to extend this research have been sought.

Dr Raby adds: "People look at lighthouses and wonder how they can absorb such colossal wave impacts. It is possible the current Eddystone Lighthouse responds less than other lighthouses, but while the cylindrical base of the lighthouse may reduce the wave run-up, video data shows it does not prevent water from jetting up above 40 metres. In this case, designers have potentially learned from previous mistakes, but this is far from the most exposed rock lighthouse and the curious effect of the particular rocky outcrops will mean other lighthouse responses to wave impacts will be quite different."

The results of further tests using the COAST laboratory at Plymouth University and a computational study are currently being analysed, while more advanced equipment is being fitted to Eddystone and additional instruments are being deployed at the Longships Lighthouse off Land's End.

Dr Raby will also be presenting the research at the annual International Association of Lighthouse Authorities' Engineering meeting in Paris in April 2016.

Media Contact

Alan Williams
alan.williams@plymouth.ac.uk
44-175-258-8004

 @PlymUni

http://www.plymouth.ac.uk 

Alan Williams | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>