Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn-led Research Maps Historic Sea-level Change on the New Jersey Coastline

29.05.2013
Hurricane Sandy caught the public and policymakers off guard when it hit the United States’ Atlantic Coast last fall.
Because much of the storm’s devastation was wrought by flooding in the aftermath, researchers have been paying attention to how climate change and sea-level rise may have played a role in the disaster and how those factors may impact the shoreline in the future.

A new study led by the University of Pennsylvania’s Benjamin P. Horton, an associate professor in the Department of Earth and Environmental Science, relied upon fossil records of marshland to reconstruct the changes in sea level along the New Jersey coast going back 10,000 years.

The team’s findings confirm that the state’s sea level has risen continuously during that period. In addition, their analysis reveals that there have been times of very high rates of sea-level rise that coincided with periods of glacial melting, a particularly relevant finding to conditions today as a warming climate has caused the large ice sheets of Antarctica and Greenland to melt into the sea.

Even leaving climate change out of the equation, the investigation indicates that sea levels will continue to rise over time, increasing the chances of disruptive flooding as was seen following Sandy.

“We’re trying to better understand past sea-level changes because they are key to putting the future in context,” Horton said.

The study was published in the Journal of Quaternary Science. Horton’s co-authors were Simon E. Engelhart, who earned his doctorate at Penn and is now at the University of Rhode Island; David F. Hill of Oregon State University; Andrew C. Kemp, who earned his doctorate and completed a postdoctoral fellowship at Penn and is now at Yale University; Daria Nikitina of West Chester University; Kenneth G. Miller of Rutgers University; and W. Richard Peltier of the University of Toronto.

To gain insight into the variations in New Jersey’s past sea levels, the team compiled and standardized data from multiple studies conducted during the last few decades. All the studies used fossil evidence of marsh vegetation to estimate sea level at various times during the Holocene, with data points from 10,000 years ago through the year 1900.

“We knew that the sea level across the whole of the U.S. Atlantic Coast, including New Jersey, has been rising for the last 10,000 years,” Horton said. “But it’s been rising at different rates. We wanted to find out the reasons for the different rates of rise and the processes that control them.”

An analysis of the data revealed three distinct time periods in which the rate of sea-level rise varied. From 10,000 to 6,000 years ago the sea level rose an average of 4 millimeters per year: from 6,000 to 2,000 years ago 2 mm per year; from 2,000 years ago until 1900,1.3 mm per year.

This last figure, a sea-level rise of 1.3 mm per year, is due to the fact that the land along the coast is naturally subsiding, or sinking over time. This rate may serve as a baseline to incorporate into future flood-risk planning, Horton noted. And the 4 mm rate of rise last seen thousands of years ago may also be relevant to the New Jersey shore’s near future.

“If you look at what was happening 6 to 10,000 years ago, the ice sheets were melting on Earth, both from northwest Europe and North America, contributing to those high rates of rise,” Horton said. “Now what’s happening? Greenland and Antarctica are melting and could trigger similar rates of sea-level rise.”

But 4 mm may not be the ceiling for rates of rise. Sea-level rise was higher than that even earlier than 10,000 years ago and could reach those rates again if climate change triggers catastrophic melting of ice sheets.

“Ice sheets don’t respond linearly to temperature rise; they go through thresholds,” Horton said. “That could lead to far higher rates of sea-level rise if they reach one of these tipping points.”

Local factors could also drive the rate of rise much higher than 4 mm per year. While the scientists’ analysis did not suggest that tidal ranges have changed significantly in the time range they studied, anthropogenic factors, such as dredging in the Delaware Bay or groundwater extraction in the Atlantic City region, could serve to increase tides or sediment compaction, thus effectively driving sea level higher in those areas.

“To model what the ocean is doing, you have to incorporate what the land is doing, too,” Horton said. “This is the way we’re starting to go from global to regional projections of sea level.”

This study was supported by the U.S. Department of Energy, National Science Foundation and National Oceanic and Atmospheric Administration.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>