Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn-led Research Maps Historic Sea-level Change on the New Jersey Coastline

29.05.2013
Hurricane Sandy caught the public and policymakers off guard when it hit the United States’ Atlantic Coast last fall.
Because much of the storm’s devastation was wrought by flooding in the aftermath, researchers have been paying attention to how climate change and sea-level rise may have played a role in the disaster and how those factors may impact the shoreline in the future.

A new study led by the University of Pennsylvania’s Benjamin P. Horton, an associate professor in the Department of Earth and Environmental Science, relied upon fossil records of marshland to reconstruct the changes in sea level along the New Jersey coast going back 10,000 years.

The team’s findings confirm that the state’s sea level has risen continuously during that period. In addition, their analysis reveals that there have been times of very high rates of sea-level rise that coincided with periods of glacial melting, a particularly relevant finding to conditions today as a warming climate has caused the large ice sheets of Antarctica and Greenland to melt into the sea.

Even leaving climate change out of the equation, the investigation indicates that sea levels will continue to rise over time, increasing the chances of disruptive flooding as was seen following Sandy.

“We’re trying to better understand past sea-level changes because they are key to putting the future in context,” Horton said.

The study was published in the Journal of Quaternary Science. Horton’s co-authors were Simon E. Engelhart, who earned his doctorate at Penn and is now at the University of Rhode Island; David F. Hill of Oregon State University; Andrew C. Kemp, who earned his doctorate and completed a postdoctoral fellowship at Penn and is now at Yale University; Daria Nikitina of West Chester University; Kenneth G. Miller of Rutgers University; and W. Richard Peltier of the University of Toronto.

To gain insight into the variations in New Jersey’s past sea levels, the team compiled and standardized data from multiple studies conducted during the last few decades. All the studies used fossil evidence of marsh vegetation to estimate sea level at various times during the Holocene, with data points from 10,000 years ago through the year 1900.

“We knew that the sea level across the whole of the U.S. Atlantic Coast, including New Jersey, has been rising for the last 10,000 years,” Horton said. “But it’s been rising at different rates. We wanted to find out the reasons for the different rates of rise and the processes that control them.”

An analysis of the data revealed three distinct time periods in which the rate of sea-level rise varied. From 10,000 to 6,000 years ago the sea level rose an average of 4 millimeters per year: from 6,000 to 2,000 years ago 2 mm per year; from 2,000 years ago until 1900,1.3 mm per year.

This last figure, a sea-level rise of 1.3 mm per year, is due to the fact that the land along the coast is naturally subsiding, or sinking over time. This rate may serve as a baseline to incorporate into future flood-risk planning, Horton noted. And the 4 mm rate of rise last seen thousands of years ago may also be relevant to the New Jersey shore’s near future.

“If you look at what was happening 6 to 10,000 years ago, the ice sheets were melting on Earth, both from northwest Europe and North America, contributing to those high rates of rise,” Horton said. “Now what’s happening? Greenland and Antarctica are melting and could trigger similar rates of sea-level rise.”

But 4 mm may not be the ceiling for rates of rise. Sea-level rise was higher than that even earlier than 10,000 years ago and could reach those rates again if climate change triggers catastrophic melting of ice sheets.

“Ice sheets don’t respond linearly to temperature rise; they go through thresholds,” Horton said. “That could lead to far higher rates of sea-level rise if they reach one of these tipping points.”

Local factors could also drive the rate of rise much higher than 4 mm per year. While the scientists’ analysis did not suggest that tidal ranges have changed significantly in the time range they studied, anthropogenic factors, such as dredging in the Delaware Bay or groundwater extraction in the Atlantic City region, could serve to increase tides or sediment compaction, thus effectively driving sea level higher in those areas.

“To model what the ocean is doing, you have to incorporate what the land is doing, too,” Horton said. “This is the way we’re starting to go from global to regional projections of sea level.”

This study was supported by the U.S. Department of Energy, National Science Foundation and National Oceanic and Atmospheric Administration.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>