Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone From Rock Fracture Could Serve As Earthquake Early Warning

21.11.2011
Researchers the world over are seeking reliable ways to predict earthquakes, focusing on identifying seismic precursors that, if detected early enough, could serve as early warnings.

New research, published this week in the journal Applied Physics Letters, suggests that ozone gas emitted from fracturing rocks could serve as an indicator of impending earthquakes. Ozone is a natural gas, a byproduct of electrical discharges into the air from several sources, such as from lightning, or, according to the new research, from rocks breaking under pressure.

Scientists in the lab of Raúl A. Baragiola, a professor of engineering physics in the University of Virginia School of Engineering and Applied Science set up experiments to measure ozone produced by crushing or drilling into different igneous and metamorphic rocks, including granite, basalt, gneiss, rhyolite and quartz. Different rocks produced different amounts of ozone, with rhyolite producing the strongest ozone emission.

Some time prior to an earthquake, pressures begin to build in underground faults. These pressures fracture rocks, and presumably, would produce detectable ozone.

To distinguish whether the ozone was coming from the rocks or from reactions in the atmosphere, the researchers conducted experiments in pure oxygen, nitrogen, helium and carbon dioxide. They found that ozone was produced by fracturing rocks only in conditions containing oxygen atoms, such as air, carbon dioxide and pure oxygen molecules, indicating that it came from reactions in the gas. This suggests that rock fractures may be detectable by measuring ozone.

Baragiola began the study by wondering if animals, which seem – at least anecdotally – to be capable of anticipating earthquakes, may be sensitive to changing levels of ozone, and therefore able to react in advance to an earthquake. It occurred to him that if fracturing rocks create ozone, then ozone detectors might be used as warning devices in the same way that animal behavioral changes might be indicators of seismic activity.

He said the research has several implications.

"If future research shows a positive correlation between ground-level ozone near geological faults and earthquakes, an array of interconnected ozone detectors could monitor anomalous patterns when rock fracture induces the release of ozone from underground and surface cracks," he said.

"Such an array, located away from areas with high levels of ground ozone, could be useful for giving early warning to earthquakes."

He added that detection of an increase of ground ozone might also be useful in anticipating disasters in tunnel excavation, landslides and underground mines.

Baragiola's co-authors are U.Va. research scientist Catherine Dukes and visiting student Dawn Hedges.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>