Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygenation at a depth of 120 metres can save the Baltic Sea

19.04.2011
Oxygenation brings dead sea bottoms to life. This creates the necessary conditions for the establishment of new ecosystems that enable nature itself to deal with eutrophication. By conducting pilot studies in two fjords in Sweden, researchers at the University of Gothenburg have demonstrated that pumping oxygen-rich surface water down to sea bottoms is effective. A large wind-driven pump is now to be tested in open water in the Baltic.

“Today everyone is focused on reducing nutrient inputs to the sea in order to reduce eutrophication in the Baltic, but by helping nature itself to deal with the phosphorus that is discharged we can create a turbo effect in the battle against eutrophication,” says Anders Stigebrandt, Professor Emeritus at the Department of Earth Sciences, University of Gothenburg.

The idea of oxygenating dead sea bottoms comes from nature itself. The method of oxygenating the deep water in the Baltic can be compared to creating wetlands on land. Both methods are based on creating the conditions required for ecosystem services by establishing new ecosystems that can effectively bind the nutrients.

“If oxygen-free bottoms in the Baltic are oxygenated, it can be anticipated that every square kilometre of bottom surface will be able to bind 3 tonnes of phosphorus in a short time, which is a purely geochemical effect. If the bottoms are then kept oxygenated for a prolonged period, fauna becomes established on and in the bottoms. This leads to the bottom sediments being oxygenated down to a depth of several centimetres, and the new ecosystem probably contributes to the possibility of further phosphorus being bound to the sediment.”

The research project Baltic Deepwater Oxygenation, directed by Stigebrandt, is testing the hypothesis that prolonged oxygenation of the Baltic deep water results in long-term and increasing binding of phosphorus in bottom sediment. An important question to be answered is how the oxygenated deep-water areas can bind phosphorus in the longer term. The answers are being sought through pilot studies in Byfjorden on the west coast and Kanholmsfjärden on the east coast, as well as in laboratory experiments. The project includes examining how the oxygenated bottoms are colonised and how this affects phosphorus uptake.

Stigebrandt is now planning a trial involving large-scale wind-driven pumping in the open water of the Baltic, in cooperation with Inocean AB, which is designing the pump on the basis of established technology from the off-shore industry. The pump is contained in a 60 metres high and 100 metres deep tubular buoy which is anchored in an open location, in a deep basin yet to be decided off the east coast of Sweden. As a result of the buoy being given a small cross-sectional area at the water surface, the pump becomes non-sensitive to wave motions.

“The pump is to have capacity to pump 30 cubic metres of water per second, which is 15 times more than the pump in the Byfjord experiment. If this works, using a five times larger pump in a buoy around 120 metres deep should not pose major problems. This is the size we anticipate pumps needing to have in a future large-scale system for oxygenation of the Baltic deep water," says Stigebrandt.

Contact:
Anders Stigebrandt, Professor Emeritus of Oceanography at the Department of Earth Sciences, University of Gothenburg
+46 (0)31- 786 2851
+46 (0)70-877 2851
anst@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>