Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More oxygen – colder climate

11.09.2009
Using a completely new method, researchers have shown that high atmospheric and oceanic oxygen content makes the climate colder.

In prehistoric times, the earth experienced two periods of large increases and fluctuations in the oxygen level of the atmosphere and oceans. These fluctuations also lead to an explosion of multicellular organisms in the oceans, which are the predecessors for life as we know it today. The results are now being published in Nature.

Everybody talks about CO2 and other greenhouse gases as causes of global warming and the large climate changes we are currently experiencing. But what about the atmospheric and oceanic oxygen content? Which role does oxygen content play in global warming?

This question has become extremely relevant now that Professor Robert Frei from the Department of Geography and Geology at the University of Copenhagen, in collaboration with colleagues from Departamento de Geologý´a, Facultad de Ciencias in Uruguay, Newcastle University and the University of Southern Denmark, has established that there is a historical correlation between oxygen and temperature fluctuations towards global cooling.

The team of researchers reached their conclusions via analyses of iron-rich stones, so called banded iron formations, from different locations around the globe and covering a time span of more than 3,000 million years. Their discovery was made possible by a new analytical method which the research team developed. This method is based on analysis of chrome isotopes – different chemical variants of the element chrome. It turned out that the chrome isotopes in the iron rich stones reflect the oxygen content of the atmosphere. The method is a unique tool, which makes it possible to examine historical changes in the atmospheric oxygen content and thereby possible climate changes.

“But we can simply conclude that high oxygen content in seawater enables a lot of life in the oceans “consuming” the greenhouse gas CO2, and which subsequently leads to a cooling of the earth’s surface. Throughout history our climate has been dependent on balance between CO2 and atmospheric oxygen. The more CO2 and other greenhouse gases, the warmer the climate has been. But we still don’t know much about the process which drives the earth from a period with a warmer climate towards an “ice age” with colder temperatures – other than that oxygen content plays an important role. It would therefore be interesting to consider atmospheric and oceanic oxygen contents much more in research aiming at understanding and tackling the causes of the current climate change,” says Professor Robert Frei.

The results Professor Frei and his international research team have obtained indicate that there have been two periods in the earth’s 4.5 billion year history where a significant change in the atmospheric and oceanic oxygen content has occurred. The first large increase took place in between 2.45 billion years and 2.2 billion years ago. The second “boost” occurred for only 800 to 542 million years ago and lead to an oxidisation of the deep oceans and thereby the possibility for life to exist at those depths.

”To understand the future, we have to understand the past. The two large increases in the oxygen content show, at the very least, that the temperature decreased. We hope that these results can contribute to our understanding of the complexity of climate change. I don’t believe that humans have a lot of influence on the major process of oxygen formation on a large scale or on the inevitable ice ages or variations in temperature that the Earth’s history is full of. But that doesn’t mean that we cannot do anything to slow down the current global warming trend. For example by increased forestry and other initiatives that help to increase atmospheric and oceanic oxygen levels,” explains Professor Robert Frei, who, along with his research team, has worked on the project for three years so far.

Professor Robert Frei | EurekAlert!
Further information:
http://www.ku.dk

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>