Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The oldest ice core – Finding a 1.5 million-year record of Earth’s climate

06.11.2013
How far into the past can ice-core records go?

Scientists have now identified regions in Antarctica they say could store information about Earth’s climate and greenhouse gases extending as far back as 1.5 million years, almost twice as old as the oldest ice core drilled to date. The results are published today in Climate of the Past (http://www.climate-of-the-past.net), an open-access journal of the European Geosciences Union (EGU).


Antarctic locations (in bright blue) where 1.5 million years old ice could exist. The figure is modified from Van Liefferinge and Pattyn (Climate of the Past, 2013).

Van Liefferinge and Pattyn

By studying the past climate, scientists can understand better how temperature responds to changes in greenhouse-gas concentrations in the atmosphere. This, in turn, allows them to make better predictions about how climate will change in the future.

“Ice cores contain little air bubbles and, thus, represent the only direct archive of the composition of the past atmosphere,” says Hubertus Fischer, an experimental climate physics professor at the University of Bern in Switzerland and lead author of the study. A 3.2-km-long ice core drilled almost a decade ago at Dome Concordia (Dome C) in Antarctica revealed 800,000 years of climate history, showing that greenhouse gases and temperature have mostly moved in lockstep. Now, an international team of scientists wants to know what happened before that.

At the root of their quest is a climate transition that marine-sediment studies reveal happened some 1.2 million years to 900,000 years ago. “The Mid Pleistocene Transition is a most important and enigmatic time interval in the more recent climate history of our planet,” says Fischer. The Earth’s climate naturally varies between times of warming and periods of extreme cooling (ice ages) over thousands of years. Before the transition, the period of variation was about 41 thousand years while afterwards it became 100 thousand years. “The reason for this change is not known.”

Climate scientists suspect greenhouse gases played a role in forcing this transition, but they need to drill into the ice to confirm their suspicions. “The information on greenhouse-gas concentrations at that time can only be gained from an Antarctic ice core covering the last 1.5 million years. Such an ice core does not exist yet, but ice of that age should be in principle hidden in the Antarctic ice sheet.”

As snow falls and settles on the surface of an ice sheet, it is compacted by the weight of new snow falling on top of it and is transformed into solid glacier ice over thousands of years. The weight of the upper layers of the ice sheet causes the deep ice to spread, causing the annual ice layers to become thinner and thinner with depth. This produces very old ice at depths close to the bedrock.

However, drilling deeper to collect a longer ice core does not necessarily mean finding a core that extends further into the past. “If the ice thickness is too high the old ice at the bottom is getting so warm by geothermal heating that it is melted away,” Fischer explains. “This is what happens at Dome C and limits its age to 800,000 years.”

To complicate matters further, horizontal movements of the ice above the bedrock can disturb the bottommost ice, causing its annual layers to mix up.

“To constrain the possible locations where such 1.5 million-year old – and in terms of its layering undisturbed – ice could be found in Antarctica, we compiled the available data on climate and ice conditions in the Antarctic and used a simple ice and heat flow model to locate larger areas where such old ice may exist,” explains co-author Eric Wolff of the British Antarctic Survey, now at the University of Cambridge.

The team concluded that 1.5 million-year old ice should still exist at the bottom of East Antarctica in regions close to the major Domes, the highest points on the ice sheet, and near the South Pole, as described in the new Climate of the Past study. These results confirm those of another study, also recently published in Climate of the Past.

Crucially, they also found that an ice core extending that far into the past should be between 2.4 and 3-km long, shorter than the 800,000-year-old core drilled in the previous expedition.

The next step is to survey the identified drill sites to measure the ice thickness and temperature at the bottom of the ice sheet before selecting a final drill location.

“A deep drilling project in Antarctica could commence within the next 3–5 years,” Fischer states. “This time would also be needed to plan the drilling logistically and create the funding for such an exciting large-scale international research project, which would cost around 50 million Euros.”

More information
This research is presented in the paper ‘Where to find 1.5 million yr old ice for the IPICS “Oldest Ice” ice core’ to appear in the EGU open access journal Climate of the Past on 05 November 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website: http://www.climate-of-the-past.net/.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.clim-past.net/recent_papers.html. To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.

The discussion paper (before peer review) and reviewers comments is available at http://www.clim-past-discuss.net/9/2771/2013/cpd-9-2771-2013.html.

The other study mentioned in the release is by Van Liefferinge, B. and Pattyn, F.: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica, Clim. Past., 9, 2335–2345, 2013.

The team is composed of H. Fischer (University of Bern [Bern], Switzerland), J. Severinghaus (Scripps Institution of Oceanography, University of California, San Diego, USA), E. Brook (Oregon State University, Corvallis, Oregon, USA), E. Wolff (British Antarctic Survey [BAS], Cambridge, UK, now at the University of Cambridge), M. Albert (Dartmouth University, Hanover, New Hampshire, USA), O. Alemany (Laboratoire de Glaciologie et Géophysique de l’Environnement [LGGE], St Martin d’Hères), R. Arthern (BAS), C. Bentley (University of Wisconsin Madison, USA), D. Blankenship (Institute for Geophysics, University of Texas at Austin, USA), J. Chappellaz (LGGE), T. Creyts (Lamont Doherty Earth Observatory, Columbia University, New York, USA), D. Dahl-Jensen (Niels Bohr Institute, University of Copenhagen, Denmark), M. Dinn (BAS), M. Frezzotti (Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy), S. Fujita (National Institute of Polar Research [NIPR], Tokyo, Japan), H. Gallee (LGGE), R. Hindmarsh (BAS), D. Hudspeth (Australian Antarctic Division [AAD], Hobart, Tasmania, Australia), G. Jugie (Institut Polaire Français Paul-Emile Victor, Plouzané, France), K. Kawamura (NIPR), V. Lipenkov (Arctic and Antarctic Research Institute, St. Petersburg, Russia), H. Miller (Alfred Wegener Institute for Polar and Marine Research [AWI], Bremerhaven, Germany), R. Mulvaney (BAS), F. Pattyn (Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium), C. Ritz (LGGE), J. Schwander (Bern), D. Steinhage (AWI), T. van Ommen (AAD) and F. Wilhelms (AWI).

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use our press release subscription form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Contacts
Hubertus Fischer
Professor for Experimental Climate Physics
Climate and Environmental Physics, Physics Institute
University of Bern, Switzerland
Tel: +41 31 631 8503
Email: hubertus.fischer@climate.unibe.ch
Eric Wolff
University of Cambridge
Cambridge, United Kingdom
Tel: +44-1223-333486
Email: ew428@cam.ac.uk
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Dr. Bárbara Ferreira | idw
Further information:
http://www.climate-of-the-past.net/
http://www.egu.eu/news/77/the-oldest-ice-core-finding-a-15-million-year-record-of-earths-climate/

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>